Меню

Микроскоп 1200х что можно увидеть

Русскоязычный информационно-болтологический форум

Post by Olegus » Mon Jan 16, 2006 1:38 pm

Post by DP » Mon Jan 16, 2006 1:43 pm

Post by DanielMa » Mon Jan 16, 2006 1:43 pm

Для того чтобы что либо увидеть, надо сначала образец подготовить. Деление амебы очень сложно будет увидеть. Амебы обычно прозрачные и их не будет видно без окрашивание. Момент деления клетки будет очень сложно поймать.

Легко увидеть клетки крови, кожи. Можно купить готовые образцы в магазинах. Увеличение 900х позволяет увидеть ядро растительной клетки ввиде маленькой точки.

Post by Olegus » Mon Jan 16, 2006 1:48 pm

Post by Olegus » Mon Jan 16, 2006 1:49 pm

Post by DanielMa » Mon Jan 16, 2006 1:54 pm

Попробуйте на сперму . Только наверно надо найдти способ ее окрасить. Посробуйте разные красители капнуть на образец.

Post by DP » Mon Jan 16, 2006 2:01 pm

Попробуйте на сперму . Только наверно надо найдти способ ее окрасить. Посробуйте разные красители капнуть на образец.

Post by Olegus » Mon Jan 16, 2006 2:29 pm

Попробуйте на сперму . Только наверно надо найдти способ ее окрасить. Посробуйте разные красители капнуть на образец.

Post by KP580BE51 » Mon Jan 16, 2006 2:29 pm

900 детский? Что-то я смутно помню, что такое увеличение не детское.

Самое простое – клетки лука. Пленку с него, и под микроскоп.

Инфузорию еще поймать/найти нужно. Если аквариум есть, и кормите живыми дафниями, то их можно, те еще монстры.

В догонку – перо, муха (вообще все насекомые), кровь, если удасться отодрать крышку, то микропроцессор (любую микросхему), волос.

Post by Dmitry67 » Mon Jan 16, 2006 2:41 pm

Попробуйте на сперму . Только наверно надо найдти способ ее окрасить. Посробуйте разные красители капнуть на образец.

Клетки спермы – одни из самых мелких клеток
Самые большие человеческие клетки – яйцеклетки
Но достать их куда сложнее

Post by vaduz » Mon Jan 16, 2006 2:45 pm

Post by thinker » Mon Jan 16, 2006 3:10 pm

Попробуйте на сперму . Только наверно надо найдти способ ее окрасить. Посробуйте разные красители капнуть на образец.

Да че там в сперме интересного для ребенка то? Вот в кале искать глист – совсем другое дело.

p.s. извините, не мог удержаться.

Post by DanielMa » Mon Jan 16, 2006 3:45 pm

Попробуйте на сперму . Только наверно надо найдти способ ее окрасить. Посробуйте разные красители капнуть на образец.

Да че там в сперме интересного для ребенка то? Вот в кале искать глист – совсем другое дело.

О, а это идея! Вот чем можно сперму окрасить чтобы она не прозрачная была. Смешать сперму с жидким калом и потом играть в веселую игру с детьми – отличи глиста от будущего братика.

Post by DanielMa » Mon Jan 16, 2006 3:48 pm

KP580BE51 wrote:
Самое простое – клетки лука. Пленку с него, и под микроскоп.

Post by Noskov Sergey » Mon Jan 16, 2006 4:13 pm

Дети малые Давайте поближе к теме.

900-ка не сказать, чтобы уж совсем маленьких микроскоп. Вполне нормальный, но Bам надо иметь хороший источник света, чтобы что-то видеть. Об этом Вы ничего и не написали, хотя есть совсем дешевые 700-ки с пластиковыми линзами, куда смотри не смотри резкости не будет. А так да, лук, иoд и будут клетки, их Левенгук и на совсем чахлом микроскопе увидел.

Мой малый (5 лет) в микроскоп любит смотреть на
а. насекомых
б. текстуру материалов и листьев,
c. на соскоб кожи, например. Можно ешё каплю воды из сильно зарошего аквариума на предмет евглены зеленой и прочих окрашенных тварей. С клетками беда- дохнут при покраске.

Post by VladDod » Mon Jan 16, 2006 5:05 pm

источник

Даже самый простой микроскоп, который можно купить домой, может оказаться новой любимой игрушкой — не только для детей, но и для родителей. Главное, понять, какой всё-таки нужен именно вам. На что обращать внимание при выборе микроскопа и что потом смотреть — рассказывает биолог и популяризатор науки Антон Захаров.

Хороший микроскоп должен быть металлическим и тяжёлым. Пластиковые микроскопы почти наверняка не прослужат долго, и вряд ли у них будет нормальное качество изображения. Это очень важный критерий, так как в руках активного начинающего исследователя микроскоп будет испытывать нешуточную нагрузку, и это нормально. Особенно страдать будут регулирующие винты. А у пластиковых микроскопов они не очень надёжные, из-за этого картинка будет плохо фокусироваться. У профессионального микроскопа, кстати, таких винтов должно быть два: макро и микро. Но бывают хорошие микроскопы и с одним винтом.

Помните, что вам не нужен микроскоп с увеличением больше 400 раз. Даже выпускники биологических вузов не всегда умеют нормально работать с такими увеличениями. На нашей кафедре, например, мы такого никогда не делали. Так что увеличение в 400 раз — то что нужно. Эти 400 раз будут складываться из обычного окуляра и сменных насадок с объективами, достаточно будет двух — увеличивающих в 10 и 40 раз. Ещё одна важная вещь — хорошая подсветка. В старых микроскопах для этого использовались зеркала и настольные лампы, а сейчас у большинства есть встроенная подсветка. Лучше пусть она будет диодной.

Перед покупкой серьёзного микроскопа стоит задуматься, нужен ли вам такой или есть альтернативы. Один из вариантов — бинокуляр с увеличением от 20 до 40 раз. Более того, многие объекты даже удобнее смотреть именно при таком увеличении. Для нормального микроскопа препарат должен быть либо с самого начала очень маленьким (например, одноклеточные амёбы или другие микроскопические организмы), либо нужно делать тоненькие срезы, что тоже требует определённого умения. Ребёнку с этим справиться будет непросто. А в бинокуляр можно смотреть и на объёмные препараты. Ещё один вполне достойный вариант: специальная увеличивающая насадка на смартфон. Они бывают разные, и качество некоторых очень даже приемлемое для непрофессионалов. Хотя для многих детей настоящий микроскоп может быть намного привлекательнее просто из-за своей необычности.

Итак, вы наконец-то решили, какой микроскоп лучше всего вам подходит. И сразу возникает вопрос, а что же теперь с этим микроскопом делать.

1. Готовые препараты. В комплекте со многими микроскопами идут наборы готовых препаратов, а иногда и описаний этих препаратов, но это не принципиально, их при желании можно найти и в интернете. Такие наборы продаются и отдельно. Главное — это не отправлять ребёнка в самостоятельно плавание без инструкции. Обязательно нужно объяснить ему, что он видит перед собой. Это можно сделать самому, если остались школьные знания, а можно воспользоваться помощью бумажных или электронных методичек.

2. Самодельные препараты. Когда Антони ван Левенгук в XVII веке изобрёл первый микроскоп, он старался изучить с его помощью всё что только можно. Каплю воды из реки или лужи около дома, строение ткани, зубной налёт, кончики своих ногтей. Что мешает вам поступить так же?

Единственное, в современный микроскоп хорошо видно только очень маленькие объекты или тонкие срезы объектов покрупнее. Но готовить такие срезы можно и самому — остро заточенным ножом или острой бритвой, например, закреплённой в спичечном коробке. Попробуйте отрезать максимально тонкие кусочки разных овощей или фруктов. Растительные клетки довольно крупные, поэтому в таких препаратах часто можно рассмотреть некоторые клеточные органеллы: клеточную стенку, хлоропласты и ядро. Ещё можно делать срезы и кусочков мяса или других продуктов из вашей кухни. Главное, помните, что для рассмотрения самодельных препаратов их нужно помещать в каплю воды.

3. Неживые объекты. Возьмите ниточку с одежды, волосок, соберите немного пыли, и с помощью микроскопа вы узнаете много интересного про их структуру. Но ещё раз напомню, что если объект слишком большой, то надо или сделать его срез, или воспользоваться бинокуляром.

4. Кора пробкового дерева. Повторите исследование, в результате которого появился термин «клетка», рассмотрите срез коры пробкового дерева — для этого подойдёт обычная винная пробка.

5. Кровь. Если ребёнок или кто-то в семье порежет палец, можно эту неприятную ситуацию развернуть в полезное для науки русло. Соберите капельку крови и рассмотрите её под микроскопом.

6. Растения. Сделайте срезы не только съедобных овощей, посмотрите на срезы разных частей цветков.

7. Плесень. Оставьте кусок хлеба, чтобы он покрылся плесенью, и рассмотрите эту плесень.

8. Слюна. Аккуратно соскребите зубочисткой или чистой ватной палочкой (продезинфицируйте её вначале!) клетки с внутренней стороны щёки.

9. Паутина. Зафиксируйте её при помощи лака для волос или для ногтей, а потом аккуратно положите под микроскоп.

10. Сахар, соль, мука, крахмал, водяные знаки на купюрах – в общем всё, что попадётся на глаза. Ведь единственная граница научного исследования — это воображение исследователя.

источник

Содержание статьи:

Вы глубоко заблуждаетесь, если думаете, что детский микроскоп ничем не отличается от других обычных игрушек. Микроскоп – это «научный» прибор, позволяющий вашему ребенку прикоснуться к волшебному и таинственному микромиру. Эта не очередная игрушка, которая через пару часов окажется на антресолях. Эта маленькая «научная лаборатория», по своей функциональности не слишком то уступающая настоящим биологическим микроскопам. Поэтому неудивительно, что большинство родителей и сами готовы часами просиживать над микроскопом, заглядывая и изучая окружающий нас микромир. Детский микроскоп позволяет ребенку самостоятельно изучать структуру самых разных объектов. Конечно, на начальном этапе юному исследователю потребуется помощь родителей.

И все же, давайте более подробно рассмотрим, какие виды микроскопов предлагает нам отечественный рынок. Чаще всего эти приборы классифицируются по возможному увеличению микрочастиц, которые позволяет рассмотреть тот или иной вид микроскопа.

Остальные виды микроскопов принято относить к «специализированным». То есть работать с ними нужно в лабораторных условиях, при наличии необходимых знаний.

Одним из наиболее качественных по праву считается Микромед Эврика40х-1280х . Этот прибор широко используется в учебных заведениях при проведении лабораторных работ. Однако, благодаря трем батарейкам и адаптеру, этот микроскоп можно использовать и в домашних условиях.

Самым доступным считается МР-450 . Это микроскоп двойного действия. В роли освещения выступают солнечные лучи и освещение от лампы. МР – 450, позволяющие изучать биологические срезы и мазки.

На российском потребительском рынке сегодня представлен широкий ассортимент не только профессиональных микроскопов, но и детских оптических приборов по вполне демократичным ценам. Они отлично подойдут для исследований и опытов по химии и биологии в домашних условиях

  • Листья растений. Например, на листе крапивы можно увидеть жгучие волоски. При достаточном увеличении бесподобно смотрятся лепестки садовых и полевых цветов.
  • Волосы. Они у каждого человека и животного не только разные по своему цвету, но и толщине. И в этом можно убедиться, заглянув в микроскоп.
  • Пыльца. Мягкой кисточкой можно перенести пыльцу с растения на предметное стекло.
  • Мякоть фрукта. Не менее интересно заняться изучением строения не только мякоти, но и кожуры.
  • Грязь под ногтями может произвести самую настоящую революцию в сознании ребенка. Рассмотрев свои ногти под микроскопом, грязнуля сразу же побежит в ванную.
  • Деньги, бумага, нитки, мех.
  • Если в доме есть аквариум, то соскоб налета с его стенок заставит вашего ребенка часами не отходить от микроскопа. Налет необходимо положить на стекло и аккуратно прикрыть вторым стеклышком. Изучение столь необычной субстанции лучше осуществлять при среднем увеличении.

Как провести исследование — инструкция:

  1. Эксперимент начинаем с подготовки оптического прибора. Настраиваем свет.
  2. Чистой салфеткой протираем оба стекла микроскопа.
  3. Разводим слабый раствор йода и капаем капельку на стеклышко. Можно воспользоваться пипеткой.
  4. Убрав наружные чешуи с луковицы, аккуратно отщипываем пинцетом крохотный кусочек лука.
  5. Аккуратно укладываем его на стекло в каплю йодной воды.
  6. Иглой расправляем кусочек, и накрываем объект вторым стеклышком.
  7. Препарат (луковый срез) начинаем изучать при небольшом увеличении в пятьдесят шесть раз. При внимательном рассмотрении мы видим прилегающие вплотную клетки вытянутой формы.
  8. Затем переходим к изучению объекта при большем увеличении в 300 раз. Картина меняется на глазах. При рассмотрении видна прозрачная пористая оболочка. В полости клетки присутствует вязкая субстанция, не имеющая цвета — цитоплазма. Окрасив ее йодом, можно увидеть ядро, а в нем ядрышко. В большинстве клеток наблюдаются полости, которые в биологии носят название «вакуоли».

Благодаря, микроскопу мы смогли разглядеть строение клетки, и узнать из чего она состоит.

Для начала давайте определимся с самими понятиями «Хлоропласты» и «Лейкопласты».

Лейкопласты – это абсолютно бесцветные пластиды сферической формы, входящие в состав растительной клетки. Однако при прямом попадании на них солнечных лучей они могут преобразовываться в хлоропласты.

Главная функция хлоропластов заключается в привлечении насекомых и животных с целью опыления растений и распространения семян. Наиболее удобным для рассмотрения объектом, по мнению специалистов, считается срез красного перца. Для рассмотрения берется тоненький срез кожицы красного перца. На предметное стекло капается капля воды, и в нее помещается изучаемый объект. Сверху он накрывается вторым стеклом. Лучше всего хромопласты видны на наиболее тонких участках среза.

Лейкопласты можно прекрасно рассмотреть в обычном картофельном клубне. Нужно для эксперимента взять тончайший срез картофеля и поместить его в капельку воды на лабораторном стекле. Накрываем объект покрывным стеклом. Даже обесцвеченные лейкопласты прекрасно видны, но если их окрасить йодом они приобретают ярко синий цвет.

Детям (впрочем, как и взрослым) очень нравится наблюдать за танцующими спорами хвоща – древнего растения, заставшего динозавров. У каждой споры хвоща имеются специальные приспособления – элатеры. Они предназначены для распространения растения при помощи воздушных масс. Их топливом является изменение влажности. При рассмотрении спор хвоща покрывное стекло не используется. Чтобы заставить споры «танцевать» на них достаточно подышать, но осторожно, иначе они просто разлетятся.

При попадании на споры воды, они сжимаются. В этом случае удивительный танец можно будет наблюдать — только при полном их высыхании.

В домашних условиях найти насекомое для исследования под микроскопом не так сложно, как кажется. Достаточно просто выйти на балкон. Там, как правило, можно найти массу всевозможных трупиков насекомых. Выбрав подходящий объект, его нужно (при помощи иглы) осторожно перенести на смотровое стеклышко, и максимально аккуратно накрыть покрывным стеклом.

Любой ребенок, задевая крыло бабочки, замечал, что на его пальцах оставалась пыльца. Глядя в окуляр, можно понять, что это вовсе не пыль, а маленькие чешуйки крылышек. С помощью микроскопа ребенок сможет изучить не только строение насекомого, его крылья и конечности, но и понять, что каждая его чешуйка имеет разную форму.

Если у вас дома имеется микроскоп с увеличением 600-800х крат, то вы сможете рассмотреть массу бактерий в зубном налете, разведенном в капельке воды. Правда, выглядят они далеко не презентабельно – совсем маленькие шарики, ниточки, палочки.

Ученые выращивают целые колонии отдельных микроорганизмов, но для этого они используют специальные питательные среды.

  • Даже детский микроскоп является сложным оптическим прибором, и отношение к нему должно быть соответственное.
  • Первое время не стоит позволять ребенку крутить и вертеть винты без нужды. Родители должны сразу объяснить ребенку как называются детали микроскопа и для чего они предназначены.
  • С предметными стеклами лучше работать совместно.

Микроскоп – идеальный подарок для ребенка любого возраста. Ведь этот оптический прибор поможет расширить познания об окружающем нас мире. Ребенок почувствует себя настоящим ученым, перед которым открывает свои секреты таинственный микромир. Мир под микроскопом – это чудо доступное каждому. А если ребенок хочет заглянуть в глубины космоса, то несколько простых опытов по астрономии помогут в этом. Подробности в другой статье на нашем сайте.

источник

Очередная игрушка. Благодаря низкой цене можно брать как подарок детям, на 15 минут отвлекутся от планшетов и то хорошо. Но лучше не брать, так как есть модели более практичные, их тоже упомяну.

Цена Стоимость доставки Общая сумма:

Картинка весьма низкого качества, но за такие деньги с учетом доставки что ждать было? Тем не менее это практически микроскоп. Имеет 3 уровня увеличения. Рабочий 100х, и чисто для вида 400х и 1200х, они очень темные и мутные.
Сравнить могу с более практичным микроскопом за 2$. У маленького микроскопа увеличение чуть меньше — 60х, но линзы большие стеклянные, картинка чище. Занимает меньше места, по сути вообще места не занимает. Лучше бы 2 таких купил.

Внешний вид микроскопа есть на сайте продавца, выглядит действительно красиво, весь блестит, можно ставить на полочку для украшения помещения, если по цвету подойдет под интерьер:

Красивой коробочки нет, да она и не нужна, все равно помяли бы в дороге. Только транспортировочная пенопластовая коробка, она же пенал для составных частей комплекта.

Вот, смотрим картинку, глазом точек не видно, на макрофотке телефоном уже видно что есть точки:

На увеличении 100х, нашел похожий рисунок в интернете, действительно видно растр, из каких точек состоит, их форма, наличие пересечений:

Но то же самое видно и в карманном микроскопе, чуть мельче, но и четче и ярче.

На увеличении 1200х видно как-то так, немного размазал картинку:

Для получения такой картинки так же нужно светить сбоку телефоном например. Встроенная подсветка только снизу.

На просвет хотите увидеть что-то такое?

Нет, будет типа такого-то что-то:

Плюс по краям радуга хроматической абберации, обычно синяя кайма. Плюс низкая область фокуса, видно отдельно или нижнюю часть нитки, или верхнюю, или вообще ничего.

Поискал еще примеры увиденного, очень похоже на такой снимок, фотография волоса:

Только сильнее искажения цвета, больше синего и красного на границе светлых и темных участков. На странице автора таких картинок еще много, у него самодельный микроскоп из web камеры.

Понятно что предметные стекла в комплекте пластиковые, мутноватые какие-то, но может детям так и лучше будет. Зачем-то набор баночек и пластмассовый пинцет.

Так же в комплекте нет батареек АА формата 2 штуки. Нужно их где-то найти будет. Такие большие батарейки, вероятно, для устойчивости нужны, сам микроскоп очень легкий, всё пластиковое. Линзы похоже тоже пластиковые и очень мелкие, у карманного микроскопа больше раза в 2-3, стеклянные и батарейки в комплекте.

Вывод наверное такой, что карманный микроскоп всем лучше, и рассмотреть что-то, и на подарок, при цене чуть ли не в 4 раза ниже. Этот, наверное, тоже можно детям в качестве подарка, если заинтересуются, купить более качественный микроскоп. Если в принципе смотреть не интересно, тогда и в более дорогой модели смысла тоже нет.

Вероятно можно к микроскопу приделать более качественную оптику (от веб камеры или старых микроскопов), если фокусные расстояния совпадут. Может кто подскажет.

Отмечу в плюсах, что сама конструкция вполне рабочая, на столе стоит устойчиво, предметное стекло держит, настраивает резкость. Отдельно по высоте регулируется подсветка зачем-то, можно приближать и отдалять от предметного стола нижним регулятором. И перемещается оптика вверх-вниз верхним регулятором, настраивая фокус. Регуляторы не люфтят, как настроил, так и держатся. Даже обидно что качественная работа в тех местах, которые и не нужны без качественной оптики.

Снимается окуляр, там как минимум 2 линзы, и на трубке еще одна мелкая линза, перед предметным стеклом:

Есть еще картинка с сайта продавца, там тоже не всё корректно:

Комплектация правильная, а картинки такой не будет. Опять же если только картинка в контексте таком, что посмотреть изображение в учебнике биологии, и найти нечто похожее на картинке в микроскопе, как подтверждение теории.

Вывода у меня нет. Рекомендовать к покупке не могу, мне в целом не понравился, при наличии альтернатив, более дешевых. Но по соотношению цена/качество вполне нормально, для такой габаритной конструкции и на разрешении 100х он все таки работает. Рассматривать след ручки, срез листа, полиграфию можно, но не очень комфортно.

Добавление к статье. Экспериментировал с деталями микроскопа, обнаружил что он согласуется с web камерой (не любой, специфическая 7 мм диаметром). Навел на монитор, картинка типа такой:

Буква около 2 мм. Свою фотку не выкладываю не зафиксировал устройство относительно монитора, картинка смазалась.

Еще дополнение. Через микроскоп карманный за 2$ можно смотреть web камерой, у меня web камера эндоскоп настроена на фиксированный фокус примерно в 5 см от объектива, вот так она видит линейку:

Через микроскоп карманный, линейку видно так:

Через объектив от микроскопа (окуляр не используется), видно линейку так:

миллиметровые деления:

Вполне видно всё. Но тут используется только объектив микроскопа. Если объектив в составе микроскопа, окуляр дает увеличение еще в 4 раза, и область видимости всего 1 мм (точнее 0.8 мм на увеличении 100х, 1.0 мм на увеличении 400х, 1.2 мм на увеличении 1200х).

источник

Строение бактерий много проще и однообразнее, чем строение простейших, и здесь нет такого богатства форм, как у инфузорий. Однако это единообразие и простота строения делают бактерии очень хорошей моделью для многих опытов. Еще проще устроены, и поэтому еще лучше, как модель, вирусы. Но о них — после, в особой главе.

Чтобы посмотреть на живые бактерии, нам с вами придется поискать более сильные и сложные микроскопы, чем те, в которые можно рассмотреть инфузории. Без увеличения в 600—800 раз тут не обойтись.

Зато источник, в котором всегда можно найти множество разнообразных бактерий, доступен всегда. Это — ваш собственный рот. Соскребите зубной налет и размешайте его в капельке воды или слюны на предметном стекле. Этого вам хватит для ознакомления с основными формами бактерий.

Если вы посмотрите на них в обычный микроскоп, употребляющийся в медицинских и биологических лабораториях, то, наверное, разочаруетесь. Будут видны сероватые, с нечеткими контурами, очень маленькие палочки, шарики, нити. Разве их сравнить с причудливыми, как тропические рыбы, инфузориями?

В так называемый фазово-контрастный микроскоп вы сможете увидеть больше. Отличие этого микроскопа от обычного сводится к тому, что частицы, одинаково прозрачные для световых лучей, но с разной плотностью выглядят здесь по-разному: более плотные — темнее, менее плотные — светлее.

Интересно наблюдать живых бактерий в так называемый темнопольный микроскоп. Лучи света здесь идут не через объект наблюдения в объектив микроскопа, а сбоку. Вы, наверное, видели, как ярко светятся пылинки в солнечном луче, пробившемся из-за штор или ставни в темной комнате.

Примерно так же выглядят в темнопольном микроскопе и бактерии — как светлые точки на угольно-черном или коричневатом фоне. Общие очертания их при этом немного смазываются, но зато хорошо видно движение бактерий. А характер движения позволяет распознавать возбудителей некоторых болезней.


Фото: Saroj Regmi


Фото: U.S. Geological Survey


Фото: Umberto Salvagnin

Иные бактерии не имеют жгутиков, нужных для передвижения. Но это не значит, что в поле зрения микроскопа они будут неподвижны. Нет, вам покажется, что бактерии движутся, причем все разом, как муравьи в развороченном муравейнике. Однако это — не самостоятельное, активное движение микроба, а так называемое броуновское движение.

Броуновское движение любых мелких частиц, плавающих в жидкости (отнюдь не только микробов), — следствие беспорядочного теплового движения молекул этой жидкости. Молекулы давят на частицу со всех сторон, и она, так сказать, «топчется на месте».

Зато если под микроскопом подвижные бактерии, то вы увидите, как быстро они пересекают поле зрения, замирают на месте, а затем снова устремляются дальше. Особенно интересно наблюдать за спирохетами, похожими на ожившую спираль от электрической плитки. Они настолько тонки, что под обычным микроскопом живую спирохету трудно разглядеть.

В темнопольном микроскопе они видны гораздо лучше. Вы, наверное, найдете их в зубном налете; только хорошенько приглядитесь — лучше всего искать спирохет во время их движения. Они или плывут, извиваясь, как змейки, или дергаются на месте и даже складываются пополам.

Живых бактерий рассматривать в микроскоп не столь удобно, как мертвых и окрашенных.

Детали строения этих организмов были изучены именно на окрашенных препаратах. Чтобы окрасить бактерии, нужно нанести их на стекло (как говорят, сделать мазок), высушить его, прогреть на пламени горелки (чтобы клетки впоследствии лучше подкрасились) и капнуть на мазок каплю специальной краски.

Если вы попадете в микробиологическую лабораторию, то там, конечно, найдется набор разнообразных красок. Одна из самых распространенных — метиленовая синяя. Так как она входит в состав чернил для авторучки, то за неимением лучшего можно брызнуть на мазок каплю чернил. Через 6—8 минут краску надо смыть водой и высушить мазок.

В зависимости от того, какой вид бактерий был окрашен, вы увидите под микроскопом шарики или палочки — прямые, изогнутые или похожие на запятую. Из палочек и шариков могут образовываться цепочки. Шарики иногда объединены в группы по четыре, восемь и шестнадцать. У некоторых палочек на концах есть утолщения вроде спичечной головки. Таковы основные формы бактерий.

Однако столь краткое описание напоминает слова одного философа, который определил человека как двуногое без перьев. У бактерий, даже окрашенных самым простым способом, можно найти довольно много особенностей их строения. О некоторых из этих особенностей мы здесь расскажем.

Палочковидных бактерий в природе больше всего. Само слово «бактерия» по-гречески значит «палочка». Один из самых распространенных микробов, так называемая кишечная палочка, имеет форму длинного овала. Кишечная палочка обитает в толстых кишках; в одном грамме человеческих испражнений может содержаться 2—Ъ миллиарда этих микроорганизмов (представляете, сколько их попадает во внешнюю среду в населенной местности!).

По форме от кишечной палочки неотличимы и болезнетворные микробы — возбудители дизентерии, тифа, паратифа. Возбудитель сибирской язвы — тоже палочка, но с обрубленными концами. Бактерии сибирской язвы часто располагаются в виде длинных нитей-цепочек.

Форму палочки имеют возбудители столбняка, газовой гангрены и многих других болезней.

Иногда можно встретить название «холерная запятая». Действительно, так называемые вибрионы похожи на запятую. К ним относится и возбудитель холеры. Только не представляйте себе холерную запятую в виде головастика, как любил ее рисовать в «Окнах РОСТА» Маяковский. Это скорее изогнутая палочка равномерной толщины. Строго говоря, это даже не палочка, а отрезок спирали, один ее неполный виток.

Шаровидные бактерии называются кокками. Кокки, собранные в гроздья, напоминающие виноградные, носят название стафилококков. Некоторые из них, попадая в ранки или царапины, служат причиной нагноений и вызывают тяжелые заболевания у детей раннего возраста.

Много несчастий причиняют человеку стрептококки — микробы, похожие на нитки бус или четки. Они вызывают и рожистое воспаление, и ангину, и даже заболевание сердца — эндокардит. Коккам, расположенным по два — диплококкам, — человек обязан такими болезнями, как менингит, воспаление легких, гонорея.

В окрашенном мазке легко определить форму бактерий, но изучить строение бактериальной клетки во всех деталях невозможно. И если мы все-таки уже много знаем о строении бактерий, то этому помогли специальные методы их окраски и изучение их под электронным микроскопом.

  • микроскопический метод: световая, фазово-контрастная, флуоресцентная, электронная;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных);
  • молекулярно-генетический метод (ПЦР — полимеразная цепная реакция)
  • серологический метод — выявления антигенов микроорганизмов или антител к ним;

Способы приготовления препаратов для микроскопии. При помощи светового микроскопа можно изучать микроорганизмы, как в живом, так и в окрашенном состоянии. При исследовании микробов в живом состоянии можно получить представление о размерах, форме и характере их движения. Иногда внутри живой клетки видны блестящие, сильно преломляющие свет гранулы и споры. Для изучения микробов в живом состоянии готовят препараты висячей и раздавленной капли. Для приготовления препарата висячей капли (рис. 19) бактериологической петлей в центр покровного стекла наносят небольшую каплю исследуемого материала, суспендированного в жидкости (изотонический раствор хлорида натрия, мясопептонный бульон). Затем берут специальное стекло с луночкой в центре и края ее смазывают вазелиновым маслом. Луночкой предметного стекла накрывают каплю исследуемого материала на покровном стекле так, чтобы капля находилась в центре луночки. Слегка прижимают предметное стекло и быстро переворачивают. При правильном приготовлении препарата капля свисает в луночку. Вазелиновое масло предохраняет ее от высыхания.

Препарат раздавленной капли готовят нанесением капли суспендированного в жидкости материала на предметное стекло, которое затем накрывают покровным.

Для световой микроскопии применяют микроскоп — оптический прибор, позволяющий наблюдать мелкие объекты. Увеличение изображения достигают системой линз конденсора, объектива и окуляра. Конденсор, расположенный между источником света и изучаемым объектом, собирает лучи света в поле микроскопа. Объектив создаёт изображение поля микроскопа внутри тубуса. Окуляр увеличивает это изображение и делает возможным его восприятие глазом.

Предел разрешения микроскопа (минимальное расстояние, на котором различимы два объекта) определяется длиной световой волны и апертурой линз. Теоретически возможный предел разрешения светового микроскопа равен 0,2 мкм; реальное разрешение можно повысить за счёт увеличения апертуры оптической системы, например путём увеличения коэффициента преломления. Коэффициент преломления (иммерсии) жидких сред больше коэффициента преломления воздуха («=1,0), при микроскопировании применяют несколько иммерсионных сред: масляную, глицериновую, водную. Механическая часть микроскопа включает штатив, предметный столик, макро- и микрометрический винты, тубус, тубусодержатель.

Темнопольная микроскопия позволяет наблюдать живые бактерии. Для этого используют темнопольный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Перед началом работы свет устанавливают и центрируют по светлому полю, затем светлопольный конденсор удаляют и заменяют соответствующей системой (например, ОИ-10 или ОИ-21). Препарат готовят по методу «раздавленной капли», делая его как можно более тонким (толщина покровного стекла не должна быть толще 1 мм). Наблюдаемый объект выглядит как освещенный на тёмном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи. В качестве иммерсионной жидкости пригодно вазелиновое масло.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты за счёт повышения их контрастности. При прохождении света через окрашенные объекты происходит изменение амплитуды световой волны, а при прохождении через неокрашенные — фазы световой волны, что используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии. Для повышения контрастности фазовые кольца покрывают металлом, поглощающим прямой свет, не влияя на сдвиг фазы. В оптической системе микроскопа применяют специальный конденсор с револьвером диафрагм и центрирующим устройством; объективы заменяют на иммерсионные объективы-апохроматы.

Поляризационная микроскопия позволяет получать изображения неокрашенных анизотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганизмов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях.

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии. Метод применяют для получения контрастного трёхмерного изображения неокрашенных объектов. Принцип метода основан на раздвоении светового потока в микроскопе; один луч проходит через объект, другой — мимо него. Оба луча соединяются в окуляре и интерферируют между собой.

Люминесцентная микроскопия. Метод основан на способности некоторых веществ светиться при воздействии коротковолнового излучения. При этом испускаемые световые волны длиннее волны, вызывающей свечение. Иными словами, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра. Например, если индуцирующее излучение синее, то образующееся свечение может быть красным или жёлтым. Эти вещества (флюоресцеин изоцианат, акридиновый оранжевый, родамин и др.) используют как флюоресцирующие красители для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от источника (ртутная лампа сверхвысокого давления) проходит через два фильтра. Первый (синий) фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Второй (жёлтый) задерживает синий свет, но пропускает жёлтый, красный, зелёный свет, излучаемый флюоресцирующим объектом и воспринимаемый глазом. Обычно исследуемые микроорганизмы окрашивают непосредственно либо с помощью AT или лектинов, помеченных флюорохромами. Препараты взаимодействуют с Аг или другими связывающими лиганд структурами объекта. Люминесцентная микроскопия нашла широкое применение для визуализации результатов иммунохимических реакций, основанных на специфическом взаимодействии меченных флюоресцирующими красителями AT с Аг изучаемого объекта.

источник

С тех пор, как ученые обнаружили микробов, они учились их выращивать на различных питательных средах. Ведь для того чтобы знать, как бороться с тем или иным микроорганизмом, нужно изучить не только его форму, но и повадки, образ жизни, потребности в питании. Сейчас в лабораториях исследователи могут выращивать практически любой микроорганизм, для этого разработано огромное количество питательных сред. Но в прошлом, во времена Луи Пастера – родителя современной науки о микробах (микробиологии), в распоряжении ученых была доступна для изучения лишь вода из лесных луж и водоемов, настой сена и мясной бульон.

Слово “микроорганизм” понятие собирательное, в него входят все невидимые невооруженным глазом организмы – бактерии, грибы, одноклеточные и еще целый ряд микрожителей. К слову, вирусы не относят к микробам. Их выделяют в отдельную группу, и наблюдать их в обычный световой микроскоп не представляется возможным.

Микробы вездесущи, обнаружить их можно буквально на всем, что нас окружает. Они бывают аэробами, т.е. для их жизнедеятельности требуется присутствие свободного молекулярного кислорода, но могут быть и анаэробами, способными прожить в условиях без доступа кислорода. Размеры, форма и принципы питания у микробов очень разнятся, но из них всех, пожалуй, самой красивой и причудливой является инфузория туфелька.

Инфузорий можно часами наблюдать в микроскоп. Они имеют очень необычную форму и легко узнаются среди прочих микроорганизмов. Для наблюдения за ней не требуется длительных подготовок и специальных навыков. Ее может увидеть любой желающий даже с помощью самого простого микроскопа.

Для проведения опыта понадобится совсем немного воды из лесной лужи, зацветшего водоема, из вазы с цветами или даже из аквариума. Идеально, если в воде окажется несколько веточек водорослей. Препарат с инфузорией можно приготовить по принципу раздавленной капли, или сделать “висячую” каплю на предметном стекле с выемкой.

При рассматривании образца под микроскопом (лучше всего это делать на среднем или большом увеличении) можно заметить двигающихся овальных существ. Строго говоря, они не совсем овальные – передний конец инфузории заострен, а задний, наоборот, имеет сильно округлую форму. Одна из боковых сторон, приблизительно по центру туловища, вогнута, что придает существу большое сходство с подошвой туфли. Отсюда и название микроорганизма – инфузория туфелька. Вокруг всего тела инфузории располагаются в несколько слоев реснички, которые помогают ей двигаться и “загонять” пищу в ротовое отверстие, расположенное неподалеку от головного конца.

Для особо пытливых исследователей будет интересно понаблюдать за процессом пищеварения у инфузории. Пища, попавшая в ротовое отверстие, постепенно перемещается в “желудок” – пищеварительную вакуоль, похожую на пузырек. В ней пища переваривается, а затем выталкивается в другую вакуоль – сократительную, которая является чем то, наподобие кишечника у животных. Сократительная вакуоль служит для устранения остатков пищи наружу. Для того чтобы увидеть, как происходят эти процессы, нужно покормить инфузорию, например, несколькими капельками обычной туши для заправки перьевых ручек. После того, как инфузория заглотнет ее, можно рассмотреть месторасположение пищеварительной вакуоли – темный шарик на фоне светлого тела микроорганизма.

Многие знают, что инфузории относятся к классу простейших, но это название довольно относительное, т.к. многочисленные опыты над инфузориями обнаружили у них зачатки психической деятельности. К примеру, инфузорию помещали в узкую трубку, диаметр которой совсем немного превосходил размер самого животного. Трубку с обеих сторон запаивали. Когда инфузория доплывала до одной стороны, она делала попытки проплыть дальше, но вскоре разворачивалась головным концом и направлялась в другую сторону. Со временем инфузория стала тратить на развороты все меньше времени и сил, а значит, смогла приспособиться к новым условиям.

Но поражает в инфузории даже не это. В человеческом или другом сложном организме все клетки узкоспециализированы и выполняют какую-либо одну функцию. Инфузория же состоит из одной-единственной клетки, в которой есть, хоть и примитивная, но выделительная и пищеварительная системы, мышечная система, состоящая из сократительных волокон, двигательный аппарат из ресничек. Следовательно, эта единственная клетка может полностью обеспечивать все стороны жизнедеятельности. Возможно поэтому ученые прошлого с таким уважением относились к инфузории и часами просиживали над микроскопом, изучая и зарисовывая ее повадки.

В микроскоп, способный давать увеличение не менее 600-800х крат, можно понаблюдать не только простейших, но и бактерий. Самый простой способ это сделать – собрать небольшое количество зубного налета и развести его в капельке воды. Так можно увидеть основных представителей царства бактерий. В простом лабораторном микроскопе они будут выглядеть неказисто – маленькие шарики, палочки или нити с нечеткими контурами. Но при использовании фазово-контрастного метода на более дорогостоящих лабораторных моделях можно рассмотреть гораздо больше. Их контуры станут четче, а тела будут выделяться ярким светом на темном фоне. И хотя внутреннюю структуру при таком исследовании изучить не получится (для этого нужно убить бактерий и окрасить), можно увидеть движение бактерий. А по характеру движений ученые определяют принадлежность бактерий к тому или иному классу и выявляют возбудителей некоторых болезней.

Для лабораторных же исследований, направленных на выявление и более точную идентификацию болезнетворных организмов, часто используются жидкие и плотные питательные среды. В них можно наблюдать не только отдельных микроорганизмов, но и целые колонии, т.е. большие скопления клеток, видимые невооруженным глазом. Однако эта техника достаточно сложная и не годится для применения в домашних условиях.

Зубной налет и без всякого увеличения выглядит неприятно. По телевизору мы очень часто слышим, насколько много там бактерий. Рассмотрев под микроскопом, действительно можно убедиться, что зубной налет полностью состоит из скопления бактерий!

Обычный микроскоп с одним окуляром, служащий для наблюдений одним глазом, имеет два основных недостатка. Первый недостаток состоит в том, что при таком наблюдении, когда второй глав не участвует в процессе зрительного восприятия.

источник

Все знают что бактерии были открыты с помощью микроскопа. Но далеко не всем известно, что наблюдать за ними не так-то просто. Все дело в том, что хотя и все живые объекты микромира не видны невооруженным глазом, но тем не менее имеют очень разные размеры. Так, размеры инфузории-туфельки составляют от одной десятой до полумиллиметра (0.3 мм в среднем). Размеры сувойки — 0.2 миллиметра. А вот бактерии обычно имеют размеры порядка 2-3 микрометров. Миллиметр составляет одну тысячную часть от метра, а микрометр всего лишь одну миллионную. Путем простых расчетов нетрудно убедиться, что типичная бактерия в 100 раз меньше инфузории. Потому-то они и не были видимы в первые микроскопы, имевшие небольшое увеличение порядка 30-40 кратного. Поистине инфузория, если бы она была слоном, увидела бы бактерий как мышей, бегающих вокруг нее. Не случайно многие бактерии, такие как сенная палочка, служат для нее кормом.

Даже самые крупные бактерии из доступных для широкого наблюдения (такие как селеномонады, обитающие во рту человека и животных), потребовали от их первооткрывателя Антони ван Левенгука создания микроскопа с 500-кратным увеличением. Вообще крупные бактерии являются скорее исключением: встречаются в морских глубинах или в навозе (который не каждый захочет приготавливать как препарат самостоятельно). Типичные же бактерии не только требуют 1000 и даже 1200-кратного увеличения (что само по себе близко к максимальной разрешающей способности оптического микроскопа), но и почти прозрачны, соответственно не видны без специального окрашивания. Мельчайшие бактерии, такие как многие грамоотрицательные палочки, имеют размеры всего лишь 0,2 микрометра, то есть еще в 10 раз мельче «средних» по размеру видов, и для детального изучения требуют уже дорогостоящего электронного микроскопа.

Но не стоит огорчаться — ведь для настоящего естествоиспытателя, пусть даже и любителя, сложности только подстегивают интерес к изучаемому предмету. Для начала нужно определиться с моделью микроскопа. Совсем дешевые модели, даже декларирующие 640-кратное увеличение, не подойдут. Выбирайте прибор с 1000 или более кратным увеличением. Конденсер микроскопа обязательно должен иметь ирисовую диафрагму, и давать минимум хроматических искажений, объективы также должны быть ахроматичесие. Ведь чем больше увеличение, тем важнее отсутствие частотных отклонений в световом потоке. Кроме того, при столь большом увеличении (а значит и высокой апертуре) в объектив попадает совсем мало света, соответственно источник освещения должен быть очень мощным. Причем в данном случае мощный свет не вреден для глаз, а совсем наоборот — слабый источник создаст слишком тусклое освещение в окуляре прибора, что вредно при длительных наблюдениях.

Но и это еще не все. При столь высоких коэффициентах увеличения, близких к максимальным для оптических приборов, при «сухом» наблюдении начинают сказываться аберрации, вносимые воздухом, находящимся между покровным стеклом и фронтальной линзой объектива. Ведь воздух имеет совершенно иной коэффициент преломления, сильно отличающийся от показателей преломления стекла. Из-за этого падает значение апертуры объектива, и теряется его максимальная полезная разрешающая способность. Не так-то сложно сделать объектив с 1000-2000 кратным увеличением, но если при этом невозможно будет увидеть четких границ изучаемого объекта, а лишь только смутные и бесформенные пятна, в нем не будет смысла.

По этой причине исследователи уже начиная с 17-го века начали использовать так называемые иммерсионные объективы, производя наблюдение в жидкой среде, как будто бы микроскоп был погружен в дистиллированную воду или в масло. Их оптические характеристики спроектированы таким образом, чтобы давать максимально возможное значение апертуры при условии нахождения жидкости (отсутствия воздуха) между фронтальной линзой объектива и покровным стеклом. Естественно что при этом сама линза объектива максимально приближена к изучаемому объекту. Сначала использовалась вода, но ее коэффициент преломления все-таки существенно ниже «стеклянного». Наилучших результатов полезного разрешения для своего времени (XIX век) удалось добиться выдающемуся немецкому инженеру Эрнсту Аббе, догадавшемуся использовать сосновую смолу, имеющую существенно более близкий коэффициент преломления. А английский ученый Роберт Толл смог подобрать наилучший вариант иммерсионного масла — смолу бальзамической пихты, или так называемый канадский бальзам. Все эти усовершенствования, вкупе с ростом качества самих объективов и конденсером Аббе, позволили отцу-основателю современной батериологии Роберту Коху открыть такие патогенные бактерии как возбудители сибирской язвы, холеры и туберкулеза. А ведь размеры холерного вибриона составляют всего 1,5 на 0,3 мкм!

В настоящее время уже чаще используют синтетическое иммерсионное масло, так как оно не теряет со временем своих характеристик, не высыхает так быстро как натуральное. Ведь при затвердении показатели преломления меняются, а со временем можно повредить и сам дорогостоящий иммерсионный объектив. Тут необходимо добавить, что при работе с иммерсионными объективами ни в коем случае нельзя использовать покровные стекла, имеющие толщину больше чем 0,17 мм во избежание повреждения фронтальной линзы объектива. К счастью, предметные и покровные стекла, которые Вы можете приобрести в нашем магазине, как раз рассчитаны на такую толщину. Естественно что все манипуляции нужно выполнять в одноразовых лабораторных перчатках, а предметное стекло должно быть максимально сухим, чистым и нежирным.

Фиксацию препарата с целью предотвращения его быстрого распада и уменьшения токсичности в домашних или школьных условиях лучше всего производить путем нагрева. Для этого предметное стекло с мазком препарата берут с помощью пинцета ориентируя препаратом вверх и плавным движением проводят 2-3 раза над пламенем горелки, например газовой плиты. Также возможна химическая фиксация с помощью метилового спирта и ацетона, однако этот способ требует большей аккуратности и осторожности. После чего производится окрашивание изучаемого образца.

Как уже было сказано выше, бактерии не только имеют очень малый размер но и почти бесцветны. По этой причине зафиксированный мазок бактериального материала на предметном стекле требует предварительного окрашивания. Существует масса различных как одноэтапных, так и многоэтпаных способов раскрашивания подобных препаратов. Многие из них, такие как используемая в лабораториях всего мира окраска по Граму, требуют для своего освещения отдельной статьи. Мы расскажем лишь о простых способах окраски объектов, доступных в домашних или школьных условиях.

Его нужно производить самыми малыми каплями жидкости, поэтому выполняется окрашивание не вручную а с помощью медицинской пипетки. Например можно воспользоваться каплей обычных чернил, таких какие использовались раньше для письма перьевыми ручками. Среди одноэтапных красителей, несложных в использовании, также можно порекомендовать люголь и бриллиантовый зеленый, если удастся найти то метиловый фиолетовый (первичный краситель по Граму).

Естественно, что после прикрытия препарата покровным стеклом, нужно капнуть на него каплю иммерсионного масла, прилагаемого в комплекте поставки устройства. После чего установить препарат на предметный столик, повернуть револьверное устройство в положение, когда над препаратом располагается иммерсионный объектив, и приблизить его с помощью ручки на корпусе микроскопа так, чтобы фронтальная линза непосредственно контактировала с иммерсионным маслом, создавая безвоздушную среду для наблюдений.

Какие бактерии не самых мелких размеров можно вырастить (или культивировать, как это называется на языке микробиологов) проще всего? Любители обычно выращивают инфузорий туфелек и их живую пищу – сенных палочек в так называемом сенном настое. Сенная палочка — настоящая бактерия, служит кормом для этих инфузорий. Как же приготовить сенный настой? В этом нет ничего сложного. На один литр воды нужно 10 грамм сена (желательно бобовых культур, но не обязательно). Воду с сеном кипятат в течение 20 минут, затем фильтруют и разбавляют в пропорции 1:1 или 2:3 отстоянной остывшей водой. Большинство микроорганизмов погибает во время кипячения, но споры сенной палочки выживают. Через пару дней в растворе споры порождают сенные палочки. Из них и можно сделать мазок для изучения под покровным стеклом.

Сенная палочка является не только прекрасным источником микроэлементов для кормовых животных (таких как телята) но и помогает растениям бороться со многими болезнями.

Если у Вас нет отвращения (качество неприемлимое для настоящего биолога), то можно приготовить и навозный настой, но соблюдая при этом максимальную осторожность.

После окончания работ не забудьте почистить иммерсионный объектив микроскопа с помощью фланелевой тряпочки. Не используйте старое загустевшее масло во избежение повреждения объектива. Если же все-таки по недосмотру иммерсионное масло слишком загустеет, объектив необходимо вывернуть и тщательно почистить с помощью ватной палочки, смоченной в спиртовом растворе для чистки объективов.

источник

Чтобы удовлетворить стремление ребенка к познанию окружающего мира стоит задуматься о приобретении детского микроскопа.Получить ответ на вопрос:”Какой выбрать микроскоп для ребенка?”-легко, всего- то нужно немного разобраться в характеристиках прибора.

Оптические. Это самые простые из микроскопов. Для получения изображения исследуемых объектов в них используются видимый свет и система линз.

Примеры оптических телескопов:

Цифровые. Позволяют не только наблюдать объекты, но и выводить их на экран монитора, а так же фотографировать.

Примеры цифровых телескопов:

Фотографии, сделанные цифровым микроскопом Levenhuk D2L NG.

Ротовой аппарат комара (64 крат)

Нерв, поперечный срез (160 крат)

Увеличительная способность. Вычисляется она довольно легко – нужно умножить увеличение объектива на увеличение окуляра. Например, если увеличение окуляра равно 10 крат, а увеличение объектива 40 крат, то увеличительная способность микроскопа будет равняться 400 крат. Сейчас детские микроскопы имеют увеличение до 1200 крат. При таком увеличении можно увидеть клетки, недоступные человеческому глазу!

Если вы хотите приобрести цифровой микроскоп, то обязательно обратите свое внимание на количество пикселей у камеры и максимальное разрешение – чем их больше, тем четче изображение. Максимальное разрешение начинается от 640х480 пикселей, а количество мегапикселей в камере от 0,3 пикселей.

При выборе микроскопа стоит учитывать его вес и габариты. Микроскоп должен быть легким и компактным, для того чтобы ребенок смог сам перемещать и устанавливать прибор, где ему удобно. Вес детских микроскопов варьируется от 1.5 до 3,5 кг.Хорошим решением станет приобретение карманного микроскопа, который имеет небольшие вес и размеры. Его можно всегда носить с собой.

Увеличение у карманных микроскопов- 60- 100 крат, что позволяет подробно рассмотреть монеты, строение листика, насекомых.

Также стоит обратить свое внимание на подсветку – чем лучше освещение, тем лучше изображение рассматриваемого объекта. Есть несколько типов подсветки:

  • Лампы накаливания. Свет от таких ламп имеет желтоватый оттенок, что может существенно влиять на качество изображения. Также одним из существенных недостатков является то, что такие лампы выделяют много тепла, что может помешать, если долго наблюдать за живым организмом.
  • Флуоресцентные лампы. Лампы обладают светло- белым свечением и мало нагреваются, однако микроскопы с таким типом подсветки достаточно дорогие.
  • Светодиодная подсветка. Наиболее популярный тип освещения. Обладает ярким светом, что положительно сказывается на качестве выходного изображения. Имеют большой срок службы.
  • Галогеновые лампы. Такой тип ламп встречается на исследовательских микроскопах. Обладает мощным белым сетом.

Кошачья шерсть под микроскопом Levenhuk

Циклоп под микроскопом Levenhuk

Плавник рыбы под микроскопом Levenhuk

Крылья бабочки под микроскопом Levenhuk

Эпидермис листа герани под микроскопом Levenhuk

Эвгелена под микроскопом Levenhuk

Наиболее популярная линейка детских микроскопов- Levenhuk Фиксики. Они имеют яркий дизайн и просты в использовании. В комплект входит набор готовых микропрепаратов, что сделает исследование вашего ребенка еще увлекательней.

Существуют микроскопы для девочек. Например, микроскоп Eastcolight 2204 выполнен в розовом цвете. Имеет увеличение 900 крат. В набор входит 64 предмета.

Также продаются существуют наборы куда входят микроскоп и телескоп. К примеру, набор Вresser National Geographic: телескоп и микроскоп. Такой комплект познакомит юного исследователя с космосом, и откроют удивительный микромир.

источник

Как выбрать первый детский микроскоп? Что с ним делать дальше? На эти и другие непростые вопросы попробуем ответить вместе.

В списке хороших подарков на день рождения шести-семилетнему “почемучке” микроскопы стоят в первых рядах. Как выбрать первый детский микроскоп? Что с ним делать дальше? На эти и другие непростые вопросы попробуем ответить вместе.

Если вы заглянете в любой реальный или виртуальный магазин развивающих игрушек , то среди множества товаров непременно отыщете и детские микроскопы. Кажется, что мода на них возникла совсем недавно, в эпоху тотального “развивания” детворы едва ли не с пеленок. Но это не совсем так. Подобные игрушки были известны еще в XVIII веке. Тогда их называли “блошиными стеклами”. В яркую картонную трубочку длиной около 2 см вставлялась с одной стороны двояковыпуклая линза, а с другой – плоское стекло с прикрепленным к нему объектом. Например, блохой (отсюда и “блошиное стекло”). Стоили такие игрушки недорого и пользовались большой популярностью. Современные детские микроскопы тоже весьма популярны.

Среди дошкольников отыскать тех, кого не интересует устройство всего живого на Земле, очень не просто. Ежедневно дети задают десятки сложнейших вопросов своим мамам и папам. Любознательных малышей интересует определенно все: из чего состоят животные и растения, чем жжется крапива, почему одни листочки гладкие, а другие – пушистые, как стрекочет кузнечик, отчего помидор красный, а огурец – зеленый. И именно микроскоп даст возможность найти ответы на многие детские “почему”. Куда интереснее не просто послушать мамин рассказ о каких-то там клетках, а посмотреть на эти клетки собственными глазами. Трудно даже представить, насколько захватывающие картинки можно увидеть в окуляр микроскопа, какие удивительные открытия сделает ваш маленький естествоиспытатель.

Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности, экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям. Он будет ставить вопросы и самостоятельно искать на них ответы. Маленький исследователь сможет совсем иначе взглянуть на самые простые вещи, увидеть их красоту и уникальность. Все это станет крепкой основой для дальнейшего развития и обучения.

Нужно отметить, что очень важна заинтересованность кого-нибудь из взрослых: мамы, папы, старших брата или сестры. Тогда они смогут передать свою увлеченность малышу. Сам кроха, если, конечно, он не прирожденный биолог, вряд ли будет долго возиться с микроскопом без вашей активной помощи и участия.

Детский микроскоп ничем принципиально не отличается от микроскопа биологического. Это не макет и не игрушка, а действующий оптический прибор. И, часто, такие микроскопы имеют очень приличную оптику и большое увеличение. Давайте рассмотрим типы микроскопов и попробуем определить их основные плюсы и минусы.

Итак, чаще всего в магазине вы встретите так называемый прямой биологический микроскоп (монокулярный, т.е. имеющий один окуляр). С похожим прибором сталкивался любой из нас на уроках школьной биологии. Это классический вариант микроскопа, только оформлен он необычно и весело, чтобы понравиться своему маленькому хозяину (может быть раскрашен в яркие цвета или иметь не совсем обычную форму). С его помощью можно рассматривать как прозрачные объекты (на предметных стеклах в проходящем свете), так и непрозрачные (в отраженном свете). Важная характеристика любого микроскопа – его увеличение. Обычно микроскопы имеют три сменных объектива. Но увеличивает не только объектив. Окуляр тоже имеет свое собственное увеличение (как правило, 10 или 20 крат). Для того, чтобы посчитать общее увеличение микроскопа, нужно увеличение окуляра (всегда написано на окуляре) умножить на увеличение объектива. Так, если микроскоп имеет окуляр с 20-тикратным увеличением и объективы 4, 10 и 40, при смене объективов получаем увеличения 80, 200 и 800 крат. Современные световые микроскопы могут создавать увеличение в 1500–3000 крат. Стоит ли покупать прибор с таким увеличением в качестве первого микроскопа ребенку дошкольнику? Вероятно, не стоит. Даже для очень серьезных экспериментов малышу вряд ли понадобится увеличение больше 400–600 крат. Микробов, правда, рассмотреть не удастся. Но, если кто-нибудь из родителей не имеет специального образования, вы, скорее всего, не увидите их и в “крутой” микроскоп. Для приготовления микробного препарата нужно использовать специальные методы окраски мазка, очень мощное освещение и иммерсионные объективы (объектив с большим увеличением погружается в специальное иммерсионное масло, обычно кедровое, для устранения рассеивания света). Но расстраиваться нет причин. И без микробов маленькому биологу с головой хватит объектов для изучения.

Очень хорошим выбором для малыша станет стереомикроскоп (бинокулярный). Он имеет два расположенных под углом друг к другу окуляра, что создает стереоизображение. И хотя такие микроскопы дают относительно небольшие увеличения (до 100), зато позволяют рассматривать практически любые предметы, которые нас окружают. Это поможет малышу увидеть многие обыденные вещи совсем в ином свете. Для такого микроскопа не нужно мощное освещение. И, кроме всего прочего, бинокулярный микроскоп равномерно нагружает оба глаза, что больше подходит для неокрепшего детского зрения, чем монокуляры. Многие современные микроскопы имеют собственную встроенную подсветку. Обратите на это внимание при выборе прибора. Дополнительный источник света позволяет лучше осветить объект, а, значит, и лучше его рассмотреть.

Есть совсем маленькие, “карманные” микроскопы с небольшим увеличением. Их можно носить с собой на прогулку и рассматривать растения и насекомых прямо на лугу или в лесу.

Если у вас дома есть компьютер, можно обзавестись цифровым микроскопом. Эта дорогая современная игрушка тоже имеет свои достоинства и недостатки. Главное достоинство – возможность вывода изображения на экран монитора. Это превращает микроскоп в подобие увлекательной компьютерной игры. Ребенок может сохранить полученное изображение, отредактировать, раскрасить, подписать при помощи простого графического редактора. А еще можно записывать видеоизображение и даже сделать свой собственный видеофильм о микромире. Микроскоп снимается с подставки, с ним можно пройтись по комнате, поднося к любым предметам и получая на экране их увеличенное изображение. В каком-то смысле такой микроскоп превращается из исследовательского прибора в творческий инструмент. Хорошо ли это? И да, и нет. Если ваш малыш – натура творческая, цифровой микроскоп наверняка придется ему по душе. Если же кроха скорее естествоиспытатель, стремящийся постигнуть тайны мироздания, лучше приобрести для него обычный микроскоп. Вся захватывающая суть микроскопа именно в том, что смотришь в окуляр. Словно заглядываешь одним глазком в неведомый и удивительный мир, другую вселенную.

Для того чтобы занятия с микроскопом не наскучили малышу, организуйте их, как увлекательную игру, добавив известную долю таинственности. Пусть ребенок представит себя настоящим ученым-исследователем. А для этого ему понадобится мини-лаборатория. Выделите малышу полку, где будет стоять микроскоп, храниться образцы и необходимые инструменты для детских исследований. Обычный письменный стол может в считанные минуты превратиться в рабочий уголок. Только непременно позаботьтесь о хорошем освещении. Это снизит неизбежную нагрузку на детские глаза: чем лучше освещен объект, тем легче его разглядеть. Так что лучшее место для микроскопа – возле окна. Да еще прибавьте к этому яркую настольную лампу. Сразу приучайте малыша поддерживать порядок на рабочем месте (в лаборатории всегда должен быть порядок!), а после занятий все за собой убирать. Дайте ребенку всевозможные баночки и коробочки, в которых он сможет хранить свои объекты для исследования и необходимый инвентарь.

Кроме самого микроскопа, вам понадобятся предметные и покровные стекла, пипетки, пинцет, игла. А также некоторые вещества: дистиллированная вода, спирт, водный раствор йода (для окраски). Объясните малышу правила безопасности и строго требуйте их соблюдения. Все-таки микроскоп (даже детский) – не игрушка, а сложный оптический прибор. И колоть орехи им не стоит. Также не обязательно бездумно крутить все подряд винты. Делать это нужно осознанно и с определенной целью. Сразу расскажите малышу, что и для чего в микроскопе предназначено и научите кроху все называть своими именами, а не “штучками” и “колесиками”. Замечено, что даже пятилетние малыши быстро осваиваются с микроскопом: подбирают нужное увеличение и наводят резкость, рассматривая все, что попадается под руку.

Первое время не оставляйте малыша с микроскопом один на один. Рассматривать предметы в отраженном свете при небольшом увеличении ваш маленький микроскопист научится быстро. А вот работы с предметными стеклами лучше ему самому пока не доверять, а делать это вместе. Во-первых, приготовление препарата подразумевает манипулирование острыми предметами (лезвие, игла) и химическими веществами. Во-вторых, предметные стекла – вещь крайне хрупкая. Неумелые пальчики могут их легко раздавить и пораниться. Научите малыша пользоваться пинцетом: отделять кусочки исследуемых объектов, класть их на предметный столик. Это будет развивать аккуратность и точность движений маленького исследователя.

Раз уж малыш превратился в ученого-естествоиспытателя, значит, самое время отправиться в научную экспедицию за всевозможными образцами. Для такой необычной прогулки следует запастись несколькими баночками с крышками и коробочками, куда вы будете складывать свои находки. Очень удобна для этих целей коробка от конфет с пластиковыми ячейками или пластиковый лоток для яиц. Еще вам пригодятся маркер, чтобы подписать коробочки с образцами, пинцет и перочинный нож.

Каждый раз можно организовывать “экспедиции” в разные места. Сегодня поищите образцы во дворе, завтра отправьтесь на луг, послезавтра – к водоему. Дайте малышу возможность самому решить, что он хочет забрать домой для изучения. И, конечно, подскажите ему несколько своих идей.

Что же можно собирать? Абсолютно все! Листья, цветочки, лепестки, колючки растений, семена деревьев и цветов. Всевозможные почвы: чернозем, песок, глина. Очень интересно рассмотреть с малышом состав чернозема (хорошо видны остатки растений и даже живые насекомые), песчинки (красивые круглые кристаллики) и вязкую глину. Сразу станет понятно, где лучше расти растениям и почему. Соберите несколько видов лишайников. Они изумительно красивы под микроскопом. Интересно рассматривать мох. Часто в нем можно отыскать крошечных насекомых, которые практически не видны невооруженным глазом. Отломите по кусочку коры разных деревьев. Пригодятся перышки птиц. Зачерпните понемногу воды из лужи и заросшего водоема, прихватите немного водорослей и тины. Всю эту добычу рассортируйте и подпишите. Теперь вашему маленькому биологу хватит работы надолго.

В первую очередь необходимо настроить освещение. Для этого поверните зеркальце под предметным столиком таким образом, чтобы свет настольной лампы отражался от него и проходил через отверстие диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения (т.е. то, что вы видите в окуляр) не будет равномерно освещено. Теперь положите на предметный столик ваш препарат и зафиксируйте его специальными держателями. Установите объектив с самым маленьким увеличением. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. Во время фокусировки можно осторожно подвигать препарат. Так вам будет легче правильно его расположить. Найдя изображение, вращайте винты еще медленнее, чтобы исследуемый объект стал максимально резким. После этого при необходимости установите большее увеличение. Все, можно рассматривать!

Если к микроскопу прилагается встроенный осветитель, то зеркало вам не понадобится. Также нет необходимости его настраивать, если вы собираетесь рассматривать предметы в отраженном свете. В этом случае просто положите объект на предметный столик, который должен быть максимально освещен, и настройте фокус.

Для того чтобы рассмотреть какой-нибудь объект в проходящем свете, он должен быть очень тонким и прозрачным (иначе лучи света не смогут сквозь него пройти). Покровные стекла тщательно вымойте, сполосните в спирте (чтобы на них не оставалось пятен) и высушите. Если вы собираетесь исследовать какую-нибудь жидкость (например, молоко, сок или воду), просто капните пару капель на предметное стекло и сверху накройте покровным стеклом. Если объект исследования – кусочек растения, то при помощи острого лезвия срежьте с него тонкую, прозрачную пленочку, возьмите ее пинцетом и положите в центр покровного стекла. Сверху капните одну каплю воды. Капать воду сможет и малыш, а вот работать с лезвием, понятно, придется вам. Если ваш объект прозрачный, его нужно окрасить, добавив одну каплю водного раствора метиленового синего (в народе известен как “синька”). Теперь накрываем все это покровным стеклом, следя, чтобы под ним не осталось пузырьков воздуха, промакиваем лишнюю жидкость и изучаем под микроскопом. Такой препарат называется временным. После его изучения стекла моются и используются для последующих опытов. Если же вам хочется сохранить препарат надолго, перед тем как положить покровное стекло, тонкой иглой нанесите по его краю прозрачный клей, аккуратно придавите (стекла очень хрупкие и легко трескаются!) и оставьте сохнуть на сутки. Теперь это уже постоянный препарат, который можно рассматривать много раз.

Кстати, к большинству микроскопов прилагаются уже готовые микропрепараты и слайды для рассматривания. Такие наборы можно купить и отдельно.

Для рассматривания под микроскопом годится буквально все. Начните с небольшого увеличения. Рассмотрите вместе с малышом листочки собранных растений. Многие из них имеют волоски, которые очень интересно рассматривать в микроскоп. Хорошо видно строение листа, жилки. Посмотрите на лист мать-и-мачехи с одной и с другой стороны. Они совершенно разные: одна сторона опушена, другая – нет. Сначала пусть малыш определит это на ощупь, а потом увидит волоски в микроскоп. На листе крапивы можно рассмотреть те самые жгучие волоски, которые доставляют так много неприятностей голым детским ножкам и ручкам. Сорвите по листочку от каждого комнатного растения. Каждый по-своему интересен и неповторим. Если на подоконнике растут кактусы, пусть ради науки пожертвуют несколькими колючками.

Очень красивы лепестки цветов. Можно рассмотреть пыльцу. Для этого перенесите ее мягкой кисточкой с цветка на предметное стекло. Если малышу будет интересно, попробуйте зарисовать, как выглядит пыльца разных растений. Некоторые микроскопы снабжены специальным проектором, который проецирует изображение на бумагу. Так его легче будет зарисовать. Рассмотрите кожуру и мякоть всевозможных овощей и фруктов. Чем они похожи и чем различаются?

Интересно рассматривать волосы и сравнивать их по цвету и толщине. Окажется, что кошачья шерсть тоньше человеческого волоса, а папин волос толще детских. А подсунутый под микроскоп собственный палец может произвести настоящий фурор. Особенно впечатлит грязь под ногтями. Микробов там, конечно, не увидишь. Но и без них выглядит ужасающе. Сразу может поступить требование постричь ногти. Не менее интересно посмотреть, из чего состоит домашняя пыль, как выглядит бумага, вата, нитки, клочки кукольных волос и меха мягких игрушек, рыбьи чешуйки и кости, икринки, мед, капельки молока, кристаллики соли, сахара, лимонной кислоты, соды, льда, всевозможные семечки и крупы, кусочки грибов, камушки и ракушки, привезенные с моря, шишки, бумажные деньги (на них можно отыскать разные знаки, которые не видны без увеличения).

Если у вас есть аквариум, соскребите немного налета с его стенок, положите на предметное стекло, сверху накройте покровным стеклом и рассмотрите при среднем увеличении. Поверьте, это потрясающая картинка! Из болотной воды, которую малыш набрал в “экспедиции”, тоже получается интереснейший микропрепарат. Хоть и не микробы, но живые, двигающиеся существа. Фантастика! Кроме зоопланктона, можно увидеть и одноклеточные водоросли со жгутиками. Иногда в воду может попасть лягушачья икра, крошечные головастики и личинки водяных насекомых. А потом рассмотрите воду из-под крана. Есть ли там что-то живое и почему?

Вырастите с малышом плесень на хлебе. Для этого положите кусочек хлеба в стеклянную банку с крышкой (если есть специальная чашка Петри, то в нее), смочите водой и поставьте на несколько дней в теплое место (но не на солнце). Немного выросшей плесени положите в капельку воды на предметное стекло, закройте покровным стеклом, и ваш препарат готов. Можно рассмотреть обычные пекарские дрожжи. Для этого отщипните от брикета маленький кусочек и разведите в капельке воды. А еще можно прорастить пшеничное зернышко и ежедневно наблюдать, какие с ним происходят изменения.

Ну а самые прекрасные объекты для детских исследований – это, бесспорно, насекомые. Где брать образцы для рассматривания, решать вам. Но, думаю, не стоит ловить и убивать насекомых специально. Даже ради науки. Не нужно такой подход делать для малыша нормой. Исключения могут составлять насекомые “вредные”: муха, комар, таракан, колорадский жук. Этих “надоед” всегда можно отыскать с избытком. Очень интересно рассматривать под микроскопом (особенно бинокулярным) муху. Обратите внимание малыша на устройство ее глаза, ножек, крыльев. Посмотрите крыло с обеих сторон. Сверху хорошо видно его строение, а снизу вам представится очень красивая картинка: радужные парчовые переливы. У комара обратите внимание на “кусающее” устройство – хоботок.

Поищите на лугу крыло бабочки. Под микроскопом на нем видна пыльца. Обследуйте паутину. Там всегда можно найти погибших мелких насекомых. Просто поразительно, как сложно устроены такие крошечные, неприметные существа. Прочитайте с малышом книгу Я. Ларри “Необыкновенные приключения Карика и Вали”. Наверное, Карик и Валя видели насекомых почти такими же – огромными и ужасающими.

Микроскоп поможет малышу узнать о том, что все живое состоит из клеток. Под микроскопом можно увидеть не только клетку, но и рассмотреть ее строение. Для этого вместе с ребенком приготовьте простой и наглядный препарат из обычного репчатого лука. Почему лук? У этого растения очень крупные клетки, и они отчетливо видны при сравнительно небольшом увеличении. Итак, разрежьте луковицу на несколько частей и отделите один сочный слой. Отрежьте от него небольшой кусочек, а затем с вогнутой стороны кусочка пинцетом отделите тонкую пленочку. На предметное стекло капните дистиллированной воды, положите в нее пленочку и аккуратно расправьте иглой. Затем добавьте пару капель водного раствора метиленового синего или водного раствора йода. Делать это нужно для того, чтобы бесцветные клетки окрасились и стали лучше заметны. Если удастся отыскать красно-фиолетовую луковицу, краситель можно не добавлять. Полученную “красоту” накройте сверху покровным стеклом и промокните выступившую жидкость. Попробуйте рассмотреть препарат сначала при маленьком, а затем при большом увеличении. Расскажите малышу, что и растения и животные состоят из крошечных клеточек. Вот они-то и видны в микроскоп, будто маленькие кирпичики. А почему их назвали клетками? Это имя придумал английский ботаник Р.Гук. Рассматривая под микроскопом срез пробки, он заметил, что она состоит “из множества коробочек”. А еще он называл эти “коробочки” камерами и. клетками. Ведь, правда, похоже, что кто-то расчертил луковую пленочку на клеточки.

При большом увеличении хорошо видна клеточная стенка, ядро, вакуоль. Объясните малышу, что клеточная стенка – это перегородка, стеночка между клетками. Она защищает клетку и помогает сохранить нужную форму. Благодаря ядру клетка растет и размножается. А внутри вакуоли находится клеточный сок. Тот самый, который брызжет в разные стороны и вызывает слезы, когда мы режем лук.

Спросите малыша, почему овощи и фрукты бывают разных цветов. Он попытается ответить на вопрос, выдумывая фантастические версии. Внимательно выслушайте его предположения, а потом предложите выяснить это наверняка. Для опыта вам понадобится несколько предметных стекол, мякоть всевозможных плодов (арбуз, тертая морковь, помидор, красный и зеленый перец, ягоды рябины и др.), зеленые листья растений. Капните на предметное стекло несколько капель воды, поместите туда немного мякоти спелого помидора и расщепите ее иглой. Накройте покровным стеклом и рассмотрите вместе с малышом под микроскопом. Вы сможете увидеть внутри клеток особые включения красного цвета – пластиды. Именно они придают спелым овощам и фруктам красный, желтый или оранжевый цвет. Зеленые листья и плоды тоже содержат пластиды, но зеленого цвета. А уже знакомый нам лук или картофель белые потому, что их пластиды бесцветны. Поэкспериментируйте с самыми разными овощами и фруктами, чтобы малыш смог в этом убедиться. А затем расскажите ему, что пластиды одного вида могут превращаться в другой. Вот почему зеленый помидор поспевает и становится красным. А что происходит с зелеными листьями осенью, почему они желтеют и краснеют? Думаю, теперь юный биолог и сам сможет найти ответ на этот вопрос. Ну, разве это не замечательно?

Итак, подведем итог. Микроскоп – штука очень увлекательная. Однажды заболев им, маленький человечек может пронести свою любовь к исследованиям через всю жизнь. И какой бы деятельности не посвятили себя ваши подросшие сын или дочка в будущем, эти детские эксперименты непременно сослужат им хорошую службу. Интересных вам наблюдений и удивительных открытий!

источник

Покупка детского микроскопа, который позволит ребенку с увлечением изучать невидимый для него мир, и получать ответы на множество волнующих его вопросов, которых к этому времени, поверьте, будет великое множество.

Не стоит думать, что детский микроскоп это очередная игрушка, так как по своей функциональности он мало чем отличается от простейших биологических микроскопов, которые используются в многочисленных лабораториях, медицинских учреждениях и школьных кабинетах, где дети познают микромир. Пожалуй, единственное отличие прибора для детей является внешний вид микроскопа, который может быть окрашен в яркие цвета для того, чтобы малыш сразу обратил внимание на этот предмет и заинтересовался им.

При покупке такого устройства необходимо понимать, что на данном этапе развития ребенка ему вряд ли потребуется прибор, позволяющий рассматривать объекты с максимально возможным на сегодняшний день увеличением. Достаточно купить обычный монокулярный микроскоп с несколькими сменными объективами, которые вместе с окуляром дадут увеличение до 800 карат, чего будет вполне достаточно, чтобы юный исследователь смог рассмотреть структуру изучаемых объектов.

Микроскопы часто покупают для детей, чтобы заинтересовать их природой и биологией, однако бывает, что самим родителям заглядывать в микромир становится не менее интересно, чем ребенку.

1. Рассмотрите вместе с малышом листочки собранных растений. Многие из них имеют волоски, которые очень интересно рассматривать в микроскоп. Хорошо видно строение листа, жилки. Посмотрите на лист мать-и-мачехи с одной и с другой стороны. Они совершенно разные: одна сторона опушена, другая – нет. На листе крапивы можно рассмотреть те самые жгучие волоски, которые доставляют так много неприятностей голым детским ножкам и ручкам. Сорвите по листочку от каждого комнатного растения. Каждый по-своему интересен и неповторим. Если на подоконнике растут кактусы, пусть ради науки пожертвуют несколькими колючками. Очень красивы лепестки цветов.

2. Можно рассмотреть пыльцу. Для этого перенесите ее мягкой кисточкой с цветка на предметное стекло.

3. Рассмотрите кожуру и мякоть всевозможных овощей и фруктов. Чем они похожи и чем различаются?

4. Интересно рассматривать волосы и сравнивать их по цвету и толщине. Окажется, что кошачья шерсть тоньше человеческого волоса, а папин волос толще детских.

5. Подсунутый под микроскоп собственный палец может произвести настоящий фурор. Особенно впечатлит грязь под ногтями. Микробов там, конечно, не увидишь. Но и без них выглядит ужасающе. Сразу может поступить требование постричь ногти.

6. Не менее интересно посмотреть, из чего состоит домашняя пыль, как выглядит бумага, вата, нитки, клочки кукольных волос и меха мягких игрушек, рыбьи чешуйки и кости, икринки, мед, капельки молока, кристаллики соли, сахара, лимонной кислоты, соды, льда, всевозможные семечки и крупы, кусочки грибов, камушки и ракушки, привезенные с моря, шишки, бумажные деньги (на них можно отыскать разные знаки, которые не видны без увеличения).

7. Если у вас есть аквариум, соскребите немного налета с его стенок, положите на предметное стекло, сверху накройте покровным стеклом и рассмотрите при среднем увеличении. Поверьте, это потрясающая картинка!

8. Вырастите с малышом плесень на хлебе. Для этого положите кусочек хлеба в стеклянную банку с крышкой, смочите водой и поставьте на несколько дней в теплое место (но не на солнце). Немного выросшей плесени положите в капельку воды на предметное стекло, закройте покровным стеклом, и ваш препарат готов.

Кроме самого микроскопа, вам понадобятся предметные и покровные стекла, пипетки, пинцет, игла. А также некоторые вещества: дистиллированная вода, спирт, водный раствор йода (для окраски).

Объясните малышу правила безопасности и строго требуйте их соблюдения. Все-таки микроскоп (даже детский) – не игрушка, а сложный оптический прибор. И колоть орехи им не стоит.

Также не обязательно бездумно крутить все подряд винты. Делать это нужно осознанно и с определенной целью. Сразу расскажите малышу, что и для чего в микроскопе предназначено и научите кроху все называть своими именами, а не «штучками» и «колесиками». Замечено, что даже пятилетние малыши быстро осваиваются с микроскопом: подбирают нужное увеличение и наводят резкость, рассматривая все, что попадается под руку.

Первое время не оставляйте малыша с микроскопом один на один. Рассматривать предметы в отраженном свете при небольшом увеличении ваш маленький микроскопист научится быстро.

А вот работы с предметными стеклами лучше ему самому пока не доверять, а делать это вместе. Во-первых, приготовление препарата подразумевает манипулирование острыми предметами (лезвие, игла) и химическими веществами. Во-вторых, предметные стекла – вещь крайне хрупкая. Неумелые пальчики могут их легко раздавить и пораниться.

Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности, экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям.

Добавлять комментарии могут только авторизованные пользователи. Вы можете зарегистрироваться, войти на сайт вверху, либо авторизоваться, используя свой аккаунт в социальных сетях:

источник

Микроорганизмы под названием бактерии окружают нас повсеместно. Источники для ознакомления с этими простыми, но интересными организмами можно найти буквально везде. Даже на руках, во рту, в моче, слюне человека живут миллионы интересных образцов. Разместив бактерии под микроскопом, можно увидеть их строение, особенности, понять, по каким признакам они классифицируются.

Можно посмотреть видео, демонстрирующие увеличение данных организмов под микроскопом. Это современные устройства, позволяющие рассмотреть невидимые человеческому глазу частицы. Они дают возможность достаточно точно узнать, как устроен мир одноклеточных, а также что такое бактерия, максимально подробно.

Познакомиться с импровизированным видео под увеличительными линзами, где бактерии двигаются, можно в лабораторных и домашних условиях. Все зависит от наличия специального оборудования. Микроскопы, позволяющие производить наблюдение за организмами, имеют свою классификацию, построенную на основе конструкции оборудования, предоставляемых им возможностей. Выделяют следующие доступные виды:

  • обычный (биологические лаборатории, классы образовательных учреждений);
  • фазово-контрастный (исследует бактерии в моче);
  • темнопольный;
  • электронный.

На фото продемонстрированы данные категории для исследования бактерий, которые можно приобрести. Ознакомившись с видео, можно без труда научиться пользоваться каждой моделью, не допуская ошибок.

Многих начинающих исследователей интересует, какой прибор выбрать, чтобы рассмотреть кисломолочные, а также другие распространенные категории бактерий.

Бюджетный сегмент микроскопов, демонстрирующих 640-кратное увеличение, не даст того эффекта, который можно оценить на видео, сделанном более мощным микроскопом. Бактерии в моче, к примеру, можно увидеть только под линзами оборудования, увеличивающим в 1000 крат и больше.

Под линзами обычного микроскопа будут показаны не совсем четкие палочки, нити, шарики с отсутствием четких контуров, сероватого оттенка.

Фазово-контрастный тип прибора работает на основе определения различной плотности частиц. Данный микроскоп, позволяющий осуществлять наблюдение и увеличение бактерий, окрашивает элементы в светло-серый или темно-серый оттенок. На таком видео можно рассмотреть многократное увеличение бактерий, находящихся в моче.

Темнопольный микроскоп позволяет разглядеть кисломолочные бактерии (увидеть, как они выглядят, можно также на фото). Его преимущество состоит в рассеивании света, идущего не через линзу напрямую, а сбоку. Прибор также позволяет понять, какой актуальный характер движения бактерий.

Данный вид микроскопов следует выделить отдельно, так как на просторах разреженного пространства гибнут живые микроорганизмы, поэтому увидеть их непросто. Его изобретение стало настоящим прорывом, позволившим внести коррективы в изучение живых микроорганизмов. Много десятилетий назад оптические микроскопы не давали возможность узнать, как устроена бактерия, и рассмотреть наличие ядра или протоплазмы.

При помощи электронного устройства ученым удалось проследить процесс деления клетки. На фото можно увидеть бактерию стафилококка, часто присутствующую в моче человека и вызывающую серьезные заболевания, в состоянии деления. Исследования дали возможность снимать видео для изучения процессов на базе образовательных учреждений.

Каждый теперь может увидеть фото и видео всех известных науке бактерий в свободном доступе. Кисломолочные — это кокки и палочки, бактерии в моче — правильной формы шары (стафилококки), прямые палочки, нити (протеусы). Особенно хорошо они видны под электронным прибором на фото.

Исследуемый материал нужно фиксировать специальным методом, чтобы избежать быстрого распада и снизить уровень токсичности (второе актуально для исследования не всегда безопасных микроорганизмов в моче).

Увидеть бактерии в электронный микроскоп можно после предварительного нагрева стекла, на который нанесен образец для рассмотрения. Не обязательно покупать горелку – бытовые источники огня и стандартный пинцет позволят это сделать. В этих же целях можно использовать метиловый спирт или ацетон. Химическая фиксация требует осторожности (лучше рассмотреть для начала видео). Далее производится окраска образца с последующим увеличением его под микроскопом (наиболее распространенная краска — метиленовая синяя).

Учитывая, какой вид бактериальных организмов был окрашен, можно увидеть палочки или шарик. Они могут присутствовать в открытых ранах или моче человека.

Под электронным или обычным микроскопом с многократным увеличением будет видно движение клеток. Независимо от того, какой тип бактерий исследуется – шары-стафилоккоки (находящиеся в моче) или кисломолочные, с жгутиками или без – они не останутся неподвижными. Возникает закономерный вопрос: почему двигаются те образцы, у которых жгутиков от природы нет?

Причина — не самостоятельное движение, как у имеющих дополнительные элементы, позволяющие шевелиться, а броуновское движение (беспорядочное, теплового типа). Палочки и нити могут:

  • пересекать поле,
  • замирать,
  • складываться вдвое,
  • образовывать спираль.

Имея под рукой микроскоп для наблюдения за различными бактериями, можно исследовать свою бытовую сферу и физиологические жидкости — микроорганизмы в моче, слюне. Интересное рядом, но увидеть скрытую от посторонних глаз жизнь непросто. С одной стороны, доступны различные категории видео и фото, но гораздо эффективнее провести эксперимент самостоятельно.

источник

Даже те, кто считает микроскоп всего лишь игрушкой для ребенка, признают, что игрушка эта – полезная. Имея хороший прибор, школьник может погрузиться в удивительный наномир, понять, как устроено все вокруг, и перестанет изводить родителей вопросами. В старших классах и специализированных ВУЗах лабораторный микроскоп и вовсе необходим. Осталось только определить круг задач и выбрать лучший оптический прибор для их выполнения. А поможет вам в этом наш рейтинг микроскопов для школьников и студентов.

Монокулярные (классические) микроскопы сегодня стали более продвинутыми: многие обзавелись встроенной подсветкой и видеокамерами, позволяющими делать снимки и вести съемку во время работы.

Лучшими производителями на российском рынке оказались:

1. ООО «Оптические приборы» (Микромед)

Изначально российский бренд предлагает широкий ассортимент оптики всех уровней сложности в разных ценовых категориях. Техника производится на заводах в Китае, но качество изделий остается высоким.

Этот американский производитель также широко известен на российском рынке. Правда, к нам попадает не оригинальное оборудование из США, а изготовленные под этой маркой микроскопы из КНР. Тем не менее это абсолютно официальная и достойная продукция.

Немецкая компания известна тем, что даже при производстве детских микроскопов старается добиться максимального увеличения и качественного изображения. От аналогов отличается стильным и эргономичным дизайном.

Над разработкой оборудования для этой марки трудятся иностранные и отечественные специалисты, а выпуск готовых моделей налажен в Китае и Тайване.

Корейский бренд оптических приборов, предлагающий широкий выбор оборудования и комплектующих.

Отличная оптика для любителей. Чаще это бюджетная техника, но к счастью на ее функциональности экономить не стали. Страна производства – КНР.

Школьный микроскоп средней ценовой категории способен давать приближение от 40х до 1280х. В комплекте три стандартных объектива (4х, 10х, 40х) и два моно-окуляра с кратностью 10х и 16х. Кроме того, есть линза Барлоу, увеличивающая масштаб изображения в 2 раза, и диск с фильтрами для изучения неокрашенных предметов.

  • Чемодан для переноски;
  • Разрешение камеры 2Мп, выдающей изображения до 1600х1200 рх;
  • Экономный расход заряда батарей;
  • Плотная посадка окуляров;
  • Автоматическое сохранение снимков с камеры в программе Future WinJoe;
  • Высокое качество материалов изготовления и хорошая сборка.
  • На 1280х яркость изображений немного падает;
  • Небольшой набор совместимых ПО – 3 варианта Windows (XP, Vista и «семерка»), плюс МАС 10.4;
  • Нет антискользящих накладок на ножках;
  • Только грубая фокусировка.

Покупатели отмечают хорошую комплектацию инструментария, особенно радует наличие микротома с металлическими ножами для подготовки срезов. Полезные дополнения: USB-камера, 2 светодиодные подсветки (верхняя и нижняя), а также 5 готовых к изучению микропрепаратов. Диск с драйверами и программой-просмотрщиком фото и видео идет в комплекте.

Мощный монокулярный микроскоп с увеличением до 1200х, в который можно рассмотреть даже бактерий. Комплектуется всеми необходимыми принадлежностями для работы (предметные стекла, колбы, лабораторный инструментарий).

Есть даже слайд с засушенной бабочкой, срезами растений и насекомых. На револьверной насадке расположены 3 объектива разной кратности. Помимо максимальной 120х, есть еще на 10х и 60х. Собственное увеличение окуляра 10х.

  • Хорошая комплектация и качественные материалы изготовления;
  • Высокая кратность увеличения;
  • Есть съемный проектор для более комфортной работы с микроскопом;
  • Два вида подсветки – классическая зеркальная и диодная, работающая от батареек;
  • Наличие светофильтров.
  • Качество сборки не идеальное;
  • С экрана трудно читать изображение при хорошем освещении в комнате, так что лучше сразу затемнить помещение.

Производитель рекомендует этот микроскоп для детей старше 8 лет, но и студентам такая оптика вполне подойдет. Это бюджетный, но весьма функциональный прибор.

Модель со светодиодной подсветкой, работающей как от сети через адаптер 5,5 В, так и от трех батареек АА (все это есть в комплекте). Основной окуляр идет кратностью 16х, объективы на «револьвере» дают увеличение 4, 10 и 40х, что позволяет получить на выходе 640х. Комплектуется цифровой камерой 0,3 Мп, питающейся через USB.

  • Можно работать с прозрачными и непрозрачными объектами;
  • Большой выбор форматов записи (свыше 10);
  • Совместимость с Windows разных версий: от 2000 до 8;
  • Возможность обработки изображений в программе;
  • Полностью металлический корпус;
  • Плавная фокусировка;
  • У подвижных деталей при работе не чувствуется люфтов;
  • Комфортная подсветка с возможностью регулирования.
  • Нет предметных стекол;
  • Камера слабовата – дает разрешение снимков всего 640х480 рх;
  • Программа ToupView иногда самопроизвольно вылетает;
  • При максимальном увеличении и съемке через камеру изображение получается темным и менее детализированным.

В целом хороший и качественный микроскоп, который подойдет для школьников, но придется докупить к нему инструментарий.

Биологический микроскоп с возможностью увеличения от 40х до 1600х. Комплектуется широкопольными окулярами с 10- и 16-кратным приближением, а также объективами, закрепленными на револьверном механизме (4, 10, 40 и 100х).

Для стереоскопа это просто исчерпывающий набор. Расстояние между центральными осями окуляров регулируется в диапазоне 54-75 мм.

  • Два варианта наведения фокуса – грубый и тонкий с маленьким шагом (0,002 мм);
  • Есть предохранительный винт, защищающий объектив от контакта со столиком;
  • Регулируемая мощность встроенного освещения в пределах 6-12 Вт;
  • Светофильтры для рассматривания прозрачных объектов;
  • Большой столик (130х140 мм) с точной регулировкой положения.
  • Трудно найти в продаже;
  • Идет в минимальной комплектации – без дополнительного инструментария.

Действительно универсальный, хоть и не самый дешевый микроскоп, который подойдет для учебы в школе или ВУЗе. Также пригодится в лаборатории и при проведении многих ремонтных работ.

Дает 40-кратное увеличение: 4х на объективе и 10х на каждом окуляре. Стереоскоп имеет широкие возможности регулирования по нескольким параметрам: 54-76 мм для межзрачкового расстояния и от -5 до +5 для диоптрий на окулярах.

Зазор между объективом и предметным столиком – 60 мм, что позволяет исследовать отдельные мелкие предметы, вроде образцов породы.

  • Отличное качество материалов и сборки;
  • Доступная стоимость;
  • 3-летняя гарантия от производителя;
  • Двусторонний предметный столик с белой и черной поверхностью;
  • Совместим с цифровой камерой Levenhuk C NG (не идет в комплекте);
  • «Дружит» с окулярами других производителей, например, Микромеда – можно доукомплектовать более мощной оптикой с нанесенной размерной сеткой.
  • Нет тонкой настройки фокуса;
  • Отсутствует искусственная подсветка;
  • Не слишком удобное вертикальное положение окуляров.

Этот микроскоп больше подходит для исследований геологических образцов, работы со сложной электроникой, а также в качестве первой оптики для учеников младших классов, еще не определившихся со своими увлечениями.

Целая линейка стереоскопических микроскопов, выпускаемых в нескольких вариантах комплектации. За счет подбора кратности окуляров и объектива можно найти модель с увеличением 10-30х или 20-40х.

  • Большое рабочее расстояние – 76 мм с возможностью регулирования простым перемещением корпуса по штативу;
  • Совместим с видеоокулярами (приобретаются отдельно);
  • Плавное приближение;
  • Широкий обзор 5-10 мм;
  • Качественная оптика с хорошей контрастностью;
  • Большой выбор окуляров в свободной продаже, позволяющих получить различную кратность увеличения;
  • При изменении кратности фокус не сбивается.
  • Некоторым пользователям наглазники кажутся неудобными;
  • Используется только отраженный свет. Впрочем, в моделях 1С встроена галогенная лампа на 10 или 12 Вт.

Реализованную в МС схему Грену с расположением окуляров под углом, одни относят к достоинствам этого микроскопа, другие – к недостаткам. В первом случае на оценку повлияло высокое качество изображения, во втором – невозможность длительной работы с такой оптикой из-за повышенной нагрузки на глаза.

Здесь вместо традиционных окуляров установлен жк-дисплей с диагональю 3,5 дюйма. Возможность увеличения: от 20х до 500х. Прибор работает от встроенного аккумулятора, оптика допускает ручную фокусировку до 150 мм.

  • Фото и видеосъемки можно сохранять на карту памяти (формат microSD);
  • На измерительном столике нанесена размерная шкала;
  • Равномерное распределение подсветки благодаря 8 светодиодам с возможностью регулировки яркости;
  • Совмещается с большинством популярных программных оболочек: Win (от ХР до 10) и Mac версий 10.6-10.10;
  • Возможность делать снимки с разрешением от 1,3 до 12 Мп, соответственно, фотографии получаются размером от 1280х1024 до 4288х2848 рх;
  • Яркость и баланс цветов легко регулируются вручную на самом мониторе.
  • Программа с установочного диска запускается только после подключения микроскопа к компьютеру;
  • Нет возможности установить видеоокуляр;
  • Времени на зарядку аккумулятора уходит столько же, сколько на автономную работу – 2 ч.

Покупатели называют этот микроскоп наиболее функциональным и удобным. Он автоматически выполняет замеры параметров исследуемого объекта и выводит их на экран.

Очень удобный и предельно простой в обращении USB-микроскоп с увеличением от 50 до 400 крат. Питается от трех батареек АА, продается сразу в жестком кейсе – для удобства и безопасной переноски. В комплекте идет камера 1,3 Мп с подключением к компьютеру через USB-шнур 2.0/1.1 или к телевизору (проектору) через кабель AV.

  • Возможность снять камеру или весь рабочий блок, если необходимо рассмотреть крупный предмет, не помещающийся на столике;
  • Можно пользоваться традиционным оптическим окуляром;
  • Двухсторонняя подсветка для изучения прозрачных и непрозрачных предметов;
  • Удобное регулирование zoom с помощью поворотного колесика;
  • В комплекте идут стекла, инструментарий и даже образец для изучения, что для электронных микроскопов редкость.
  • ПО устанавливается только на системы Windows XP, 32-битную Vista и «семерку»;
  • Маркий белоснежный корпус.

Благодаря возможности работы от батареек микроскоп можно использовать «в поле». А съемная камера позволяет применять его для изучения предметов разных размеров и под любым углом.

Недорогой школьный микроскоп имеет варианты кратности 20х, 80х и 350х, а также камеру 1,3 Мп. Однако предназначен он только для просмотра тонких предметов, пропускающих свет. В комплекте идет несколько уже готовых образцов.

  • Плавная регулировка – колесиком на корпусе;
  • Есть встроенная диодная подсветка – питается от компьютера через USB-шнур;
  • В комплекте идут предметные стекла для подготовки собственных образцов для изучения;
  • Достаточно широкий набор совместимого ПО Windows – от ХР до «десятки»;
  • Длительная гарантия – 5 лет;
  • Дает снимки с разрешением 1280х1024 рх.
  • Нет верхней подсветки для изучения объемных непрозрачных объектов;
  • Работает только при подключении к компьютеру и не предполагает автономного использования.

1. Для работы в лабораторных условиях и изучения бактерий нужны микроскопы с высокой кратностью увеличения, такие как Микромед Эврика или Sturman HM1200-R.

2. Если работать с микроскопом приходится длительное время, лучше приобрести комфортный стереоскопический прибор Sigeta MB-203.

3. Ученикам старших классов достаточно будет менее мощных микроскопов, таких как Levenhuk D2L NG.

4. В качестве подарка ребенку можно выбрать доступный по цене бинокулярный микроскоп с невысоким разрешением: Levenhuk 2ST или Микромед МС-1.

5. Чтобы получать высокоточные снимки изучаемых объектов (для подготовки отчетов по лабораторным работам, курсовых проектов и пр.), понадобится хороший цифровой микроскоп Levenhuk DTX 500 LCD.

6. Если нужно изучать неподготовленные образцы за пределами лаборатории, лучше брать с собой оптику Sititek Микрон Space с возможностью автономной работы.

7. Для домашнего пользования и подготовки к школьным занятиям хорошим выбором станет цифровая модель Bresser Junior DM 400.

Хочешь получать актуальные рейтинги и советы по выбору? Подпишись на наш Telegram.

источник

Читайте также:  Можно ли давать сахарную свеклу кроликам
Adblock
detector