Меню

Примеры по математике 5 класс обыкновенные дроби

Самостоятельные занятия с ребенком в домашних условиях играют важную роль в процессе обучения. Даже не имея специального образования можно самостоятельно прорешивать с ним примеры и задачи по основным темам, встречающимся в текущем учебном году.

Эти задания вы можете распечатать на принтере.

Для того чтобы занятия действительно приносили пользу, необходимо придерживаться определенных правил, которые помогут сделать день продуктивнее, без утомления ребенка:

  1. Самое главное правило, которое пригодиться не только школьнику, но и любому взрослому человеку, это правильное чередования умственного труда и физического. Необходимо составить распорядок дня так, чтобы после физических нагрузок обязательно шли более спокойные, умственные занятия. Нельзя делать уроки сразу же после возвращения из школы, то же самое касается и дополнительных занятий.
  2. Для решения задач вне школьной программы лучше всего выбирать менее загруженные уроками дни.
  3. Во время занятий нужно убрать все отвлекающие факторы, для того чтобы внимание ребенка не рассеивалось. Если есть возможность решить важные дела перед уроками, то лучше сделать это заранее.
  4. Начинать всегда нужно со сложных задач, а затем переходить к более простым.
  5. Обязательно нужно хвалить ребенка за его достижения и правильно выполненную работу.
  6. Для того чтобы мозг работал, детям нужно давать шанс самостоятельно решать примеры и задачи. Даже если в течение долгого времени он не может найти ответ, не нужно делать очевидных подсказок, пусть он найдет путь решения самостоятельно.
  7. Хорошо запоминать принцип математических решений помогают ассоциации, например, дроби можно представлять как кусочки одного торта или яблока.

Перед тем как познакомиться с обыкновенными и десятичными дробями, необходимо вспомнить что такое натуральные числа. Ими называются числа, используемые в повседневной жизни, например для счета предметов.

Определить, какое число стоит перед:

Определить, какое число на две единицы больше, чем:

Написать в виде словосочетаний следующие цифры:

Представить в виде чисел словосочетания:

  1. триста шестьдесят девять;
  2. одна тысяча двести девяносто три;
  3. десять тысяч шестьсот восемьдесят восемь;
  4. двести пятнадцать тысяч семьсот двадцать четыре.

При помощи сравнения можно определить какое из чисел меньшее, а какое большее. Те что меньше, стоят при счете раньше, чем те, что больше.

Расставить 3наки « » или «=» между числами:

  1. 18 32;
  2. 54 16;
  3. 347 524;
  4. 546 546;
  5. 675 23 433;
  6. 563 736 634;
  7. 392 450 81;
  8. 5 453 5 543;
  9. 949 3 432 563;
  10. 101 101 3455 456.

Для того чтобы повторить сложение, вычитание чисел, а также порядок действий при вычислении сложного выражения, можно решить несколько выражений:

  1. 24 • (58 + 114) — 336;
  2. (563 — 260 : 4) + 61 • 37;
  3. 7 354 — (354 + 193 • 4) + (743 — 25);
  4. (1 623 + 570 : 30) — (3 540 — 413 • 7).

Ответы: 1) 3 792, 2) 2 755, 3) 5 510, 4) 993.

В саду росло 208 фруктовых деревьев. Яблонь и слив было 129 штук, а слив и груш — 115. Сколько яблонь росло в саду? Слив? Груш?

Решение: Если известно, что всего деревьев было 208, а яблонь и слив — 129, то можно вычислить количество груш.

1 действие: 208 — 129 = 79 (дер.) — грушевых.

Стало известно количество грушевых деревьев, значит можно узнать, сколько было слив.

2 действие: 115 — 79 = 36 (дер.) — сливовых.

После того, как стало известно, сколько было груш и слив, можно высчитать количество яблонь.

3 действие: 208 — (79 + 36) = 93 (дер.) — яблонь.

Ответ: В саду росло 93 яблони, 79 груш и 36 слив.

Отрезком называется часть прямой ограниченная двумя точками, его длинной считается расстояние между крайними точками. Луч — это часть прямой, которая состоит из точки и всех других точек, лежащих по одну сторону от нее.

Начертите отрезок АВ, равный 12 см. Отметьте на нем точки по порядку С и D так, чтобы отрезок АС был равен 4 см, а СD — 6 см. Вычислите, чему равен отрезок DВ?

Начертите прямую, произвольно отметьте на ней точку А, которая будет служить началом луча. 3атем начертите вторую прямую с точкой В так, чтобы она пересекала луч А. Место пересечения двух лучей можно обозначить точкой С. Напишите, чему равна длина получившихся отрезков АС и ВС.

Начертите произвольную прямую и отметьте на ней два точки А, В и С так, чтобы длина отрезка АВ была 7 см, а отрезка ВС — 4 см. Какова длина отрезка АС?

Уравнением называется равенство, в котором один или несколько компонентов являются неизвестными.

  1. 84 • x = 588;
  2. 4 • (18 + x) = 96;
  3. 14x — 8x = 18;
  4. 50 + 6x — 31 = 4;
  5. 13х + 20 — 4х — 16 + х = 54.

Ответ: 1) x=7, 2) х=6, 3) х=3, 4) х=4, 5) х=5.

Насте 12 лет, что на 4 меньше, чем возраста Лены. Сколько лет Лене? Решить уравнением.

Решение: Возьмем возраст Лены за x, в таком случае можно составить уравнение:

Велосипедист за 3 дня проехал 117 км. Какое расстояние он преодолел в первый день, если в последующие он проезжал на 4 км больше, чем в предыдущий

Решение: Первый день, который проехал велосипедист, возьмем за x. В таком случае второй день будет выглядеть как x + 4, а третий — х + 4 + 4. Можно составить уравнение х + х + 4 + х + 4 + 4 = 117.

Ответ: в первый день велосипедист проехал 35 км.

Квадратом числа называется произведение этого числа самого на себя. Куб — произведение числа самого на себя два раза.

Ответ: 1) 25, 2) 81, 3) 169, 4) 2025, 5) 10 000, 6) 145 161.

Ответ: 1) 8, 2) 216, 3) 1 331, 4) 46 656, 5) 474 552, 6) 1 520 875.

  1. (7 + 4) 2 • 6;
  2. 5 352 — (47 2 + 4 3 );
  3. 61 2 — 7 • 2 3 + (20 — 4) 2 ;
  4. ( 5 + 26 ) 2 — ( 6 + 12 ) 2 — 69;
  5. (25 — 16) 3 + (36 — 33) 2 ;
  6. ( 5 + 6 ) 3 — ( 5 + 24) 2 + 727.

Ответ: 1) 726, 2) 3 079, 3) 3 921, 4) 568, 5) 738, 6) 1 217.

  1. Паша собрал 34 гриба, из которых 16 грибов оказались подосиновиками. Какую часть от всех грибов составляют подосиновики? Ответ: 16/34.
  2. Всего в книге 124 страниц, из которых Толя прочитал ровно половину. Какую часть книги прочитал Толя? Ответ: 124 : 2 = 62 — страниц было прочитано, что составляет 62/124.
  3. Оля собрала всего 38 ягод, из которых 17 штук были малиной. Какую часть от общего количества составляют остальные ягоды? Ответ: 38 — 17 = 21 — остальные ягоды, которые составляют 21/38 от общего количества.

Начертите отрезок и разделите его на 13 равных частей. Отметьте на данном отрезке: 3/13, 6/13, 10/13.

  1. Полина собрала 36 листьев, из которых березовых составляет 6/18. Сколько березовых листьев собрала Полина? Ответ: 36 : 18 • 6 = 12.
  2. Папа был на рыбалке и поймал всего 45 рыбок, 8/15 было карасей. Сколько карасей поймал папа? Ответ: 45 : 15 • 8 = 24.
  3. Мама стряпала пирожки, всего их получилось 32 штуки. 5/8 от общего количества были с капустой. Сколько пирожков с капустой состряпала мама? Ответ: 32 : 8 • 5 = 20.
  1. 7⁄30 + 18⁄30 — 6⁄30;
  2. 3⁄19 + 8⁄19 — 4⁄19;
  3. 19⁄25 — ( 21⁄50 + 2⁄25 ) — 6⁄25;
  4. 13⁄76 — 11⁄76 + 49⁄76;
  5. 27⁄129 + ( 12⁄86 — 6⁄43 ) — 7⁄43.

Ответ: 1) 19/30, 2) 7/19, 3) 1/25, 4) 51/76, 5) 26/43.

Расстояние от дома до школы составляет 4/11 км, а от школы до магазина — 5/11 км. Чему равно расстояние от дома до магазина?

Решение: Для того чтобы найти сколько составляет весь путь, необходимо сложить расстояние от дома до школы и расстояние от школы до магазина 4/11 + 5/11 = 9/11 (км).

Ответ: Расстояние от дома до магазина составляет 9/11 км.

От рулона ткани первый раз отрезали 7/15 части, а затем еще 5/15, после чего в рулоне осталось 27 м. Сколько метров длина рулона?

Решение: В первую очередь нужно узнать какая часть рулона осталась.

1 действие: 15/15 — 7/15 — 5/15 = 3/15.

Можно сделать вывод, что 27 м составляет 3/15 части от всего рулона. Для того чтобы найти длину всего рулона ткани, необходимо узнать, сколько метров составляет 7/15 и 5/15 частей.

2 действие: 27 : 3 = 9 (м) — в 1 части.

3 действие: 9 • 7 = 63 (м) — составляет 7/15.

4 действие: 9 • 5 = 45 (м) — составляет 5/15.

После того, как стало известно какая длина у каждой из частей, можно вычислить всю длину рулона.

5 действие: 63 + 45 + 27 = 135 (м).

Ответ: длина рулона 135 метров.

Ответ: 1) 8/26, 2) 1/3, 3) 2/9, 4) 21/16, 5) 36/55.

В первом ящике лежит 3/16 от всего количества яблок, а во втором в 3 раза больше. Какая часть от всего количества яблок лежит в обоих ящиках?

Решение: Сначала нужно узнать сколько яблок лежит во втором ящике.

После того как стало известно сколько яблок лежит во втором ящике, можно узнать их общее количество.

2 действие: 3/16 + 9/16 = 12/16 = 3/4 (яб.)

Ответ: 3/4 части от общего количества яблок лежит в обоих ящиках.

3а два дня автомобиль поехал 6/10 пути. Известно, что во второй день он проделал путь в 4 раза больше, чем в первый. Cколько проехал автомобиль в первый и второй день?

Решение: Пусть первый день пути будет x, тогда можно составить уравнение x + х • 4 = 6/10.

х = 3/25 — проехал автомобиль в 1 день.

После того как стало известно, какая часть пути была преодолена в 1 день, можно высчитать 2 день.

Ответ: в первый день автомобиль проехал 3/25, а во второй — 12/25.

Представить обыкновенные дроби в виде десятичных:

Ответ: 1) 0,5; 2) 1,03; 3) 0,2; 4) 16,004; 5) 0,18.

Начертите отрезок, разделите его на 6 равных частей. Отметьте на нем точки 0,3; 1,5; 2,2; 3,7; 4; 5,6.

Ответ: 1) 32,75; 2) 77; 3) 7,28; 4) 31,9; 5) 18,7; 6) 8,933.

В первый день катер проплыл 3,5 км, во второй на 4,31 км больше, а в третий — на 0,9 км меньше, чем во второй. Сколько всего км проплыл катер за 3 дня?

Решение: Необходимо вычислить, сколько катер проплыл в первый и во второй день.

1 действие: 3,5 + 4,31 = 7,81 (км) — проплыл во второй день.

2 действие: 7,81 — 0,9 = 6,91 (км) — проплыл в третий день.

После того как стало известно, сколько было пройдено за каждый день, можно узнать весь путь.

3 действие: 3,5 + 7,81 + 6,91 = 18,22 (км).

Ответ: за три дня катер проплыл 18,22 км.

Ответ: 1) 46,704; 2) 274,512; 3) 19,544; 4) 2,125; 5) 2,7; 6) 9,54.

3агадано число, если его увеличить в 3 раза, а затем прибавить 2,16, то получиться 27,96. Какое число было загадано?

Решение: Пусть неизвестное число будет x, тогда можно составить уравнение х • 3 + 2,16 = 27,96.

Ответ: было загадано число 8,6.

Расстояние между населенными пунктами равно 53,7 км. Навстречу друг другу вышли два пешехода, скорость первого 3,8 км/ч, второго — 4,6 км/ч. Какое расстояние будет между ними через 2,7 часа?

Читайте также:  Как определить спелость тыквы и когда ее убирать

Решение: Нужно вычислить, какое расстояние пешеходы пройдут за 2,7 часа.

1 действие: 3,8 • 2,7 = 10,26 (км) — пройдет первый пешеход.

2 действие: 4,6 • 2,7 = 12,42 (км) — пройдет второй пешеход.

После того как стало известно, сколько прошли пешеходы, можно высчитать, какой путь им еще нужно преодолеть до встречи друг с другом.

3 действие: 53,5 — 10,26 — 12,42 = 30,82 (км).

Ответ: через 2,7 часа между пешеходами будет 30,82 км.

источник

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь список материалов и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:

Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.

*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:

В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ.

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ.

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

в разложении большего числа не хватает тройки

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

Если есть возможность сократить дробь на стадии вычисления, то лучше это сделать:

Ещё правило относящееся к умножению!

Примеры, которые мы уже рассмотрели:

Определить, сколько составляет 3/7 от числа 63?

Задача. Весь путь составляет 180 километров. Турист в первый день прошёл 3/10 пути. Сколько километров турист прошёл в первый день?

Задача. На базу привезли 13 тонн овощей. Картофель составляет ¾ от всех завезённых овощей. Сколько килограмм картофеля завезли на базу?

*Ранее обещал вам привести формальное объяснение основного свойства дроби через произведение, пожалуйста:

Деление дробей сводится к их умножению. Здесь важно запомнить, что дробь являющаяся делителем (та, на которую делят) переворачивается и действие меняется на умножение:

Данное действие может быть записано в виде так называемой четырёхэтажной дроби, ведь само деление «:» тоже можно записать как дробь:

источник

Дроби можно складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой. В принципе всё, что можно делать с обычными числами, можно делать и с дробями.

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3. Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется наименьшее общее кратное (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1. Сложим дроби и

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Читайте также:  Как печь дома хлеб в духовке

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Поэтому на первых этапах советуем записывать каждую мелочь. Хвастаться можно лишь в будущем, когда будут усвоены азы.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Теперь научимся вычитать дроби у которых разные знаменатели. Когда вычитают дроби их знаменатели должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

Читайте также:  Как правильно устроить цветник на даче

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на наибольший общий делитель (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений.

Пример 1. Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2. Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Число, которое умножается на дробь, и знаменатель дроби разрешается сокращать, если они имеют общий делитель, бóльший единицы.

Например, выражение можно вычислить двумя способами.

Первый способ. Умножить число 4 на числитель дроби, а знаменатель дроби оставить без изменений:

Второй способ. Умножаемую четвёрку и четвёрку, находящуюся в знаменателе дроби , можно сократить. Сократить эти четвёрки можно на 4 , поскольку наибольший общий делитель для двух четвёрок есть сама четвёрка:

Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче:

Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением:

А вот к примеру выражение можно вычислить только первым способом — умножить 7 на знаменатель дроби , а знаменатель оставить без изменений:

Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются.

Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной:

Сокращение дроби подразумевает, что и числитель и знаменатель будет разделён на одно и тоже число. В ситуации с выражением деление выполнено только в числителе, поскольку записать это всё равно, что записать . Видим, что деление выполнено только в числителе, а в знаменателе никакого деления не происходит.

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

  • обратным числа 2 является дробь
  • обратным числа 3 является дробь
  • обратным числа 4 является дробь

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

  • для дроби обратной дробью является дробь
  • для для дроби обратной дробью является дробь
  • для дроби обратной дробью является дробь

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

Итак, требуется разделить дробь на число 2 . Здесь делимым является дробь , а делителем число 2.

Чтобы разделить дробь на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить на

Получили ответ . Значит при делении половины на две части получается четверть.

Попробуем понять механизм этого правила. Для этого рассмотрим следующий простейший пример. Пусть у нас имеется одна целая пицца:

Умножим её на 2. То есть, повторим её два раза (или возьмём два раза). В результате будем иметь две пиццы:

Теперь угостим этими пиццами двоих друзей. То есть, разделим 2 пиццы на 2. Тогда каждому достанется по одной пицце:

Разделить две пиццы на 2 это всё равно, что взять половину от этих пицц, то есть умножить число 2 на дробь

В обоих случаях получился один и тот же результат.

Тоже самое происходило, когда мы делили половину пиццы на две части. Чтобы разделить на 2, мы умножили эту дробь на число, обратное делителю 2. А обратное делителю 2 это дробь

Пример 2. Найти значение выражения

Умножим первую дробь на число, обратное делителю:

Допустим, имеется четверть пиццы и нужно разделить её на двоих:

Если разделить эту четверть на две части, то каждая получившаяся часть будет одной восьмой частью целой пиццы:

Заменять деление умножением можно не только при работе с дробями, но и с обычными числами. Например, все мы знаем, что 10 разделить на 2 будет 5

Заменим в этом примере деление умножением. Чтобы разделить число 10 на число 2, можно умножить число 10 на число, обратное числу 2. А обратное числу 2 это дробь

Как видно результат не изменился. Мы снова получили ответ 5.

Можно сделать вывод, что деление можно заменять умножением при условии, что вместо делителя будет подставлено обратное ему число.

Пример 3. Найти значение выражения

Умножим первую дробь на число, обратное делителю. Обратное делителю число это дробь

Допустим, имелось пиццы:

Как разделить такую пиццу на шестерых? Если каждый из трех кусков разделить пополам, то можно получить 6 равных кусков

Эти шесть кусков являются шестью кусками из двенадцати. А один из этих кусков составляет . Поэтому при делении на 6 получается

Правило деления числа на дробь такое же, как и правило деления дроби на число.

Чтобы разделить число на дробь, нужно умножить это число на дробь, обратную делителю.

Например, разделим число 1 на .

Чтобы разделить число 1 на , нужно это число 1 умножить на дробь, обратную дроби . А обратная дроби это дробь

Выражение можно понимать, как определение количества половин в одной целой пицце. Допустим, имеется одна целая пицца:

Если зададим вопрос «сколько раз половина содержится в этой пицце» , то ответом будет 2. Действительно, половина содержится в одной целой пицце два раза

Пример 2. Найти значение выражение

Умножим число 2 на дробь, обратную делителю. А обратная делителю дробь это дробь

Допустим, у нас имеются две целые пиццы:

Если зададим вопрос «сколько раз половина содержится в двух пиццах» , то ответом будет 4. Действительно, половина содержится в двух пиццах четыре раза:

Чтобы разделить дробь на дробь, нужно первую дробь умножить на дробь, обратную второй.

Например, разделим на

Чтобы разделить на , нужно умножить на дробь, обратную дроби . А обратная дроби это дробь

Допустим, имеется половина пиццы:

Если зададим вопрос «сколько раз четверть пиццы содержится в этой половине» , то ответом будет 2. Действительно, четверть пиццы содержится в половине пиццы два раза:

Пример 1. Найти значение выражения

Умножаем первую дробь на дробь, обратную второй. Грубо говоря, умножаем первую дробь на перевёрнутую вторую:

Пример 2. Найти значение выражения

Умножаем первую дробь на дробь обратную второй:

Здесь советуем остановиться и потренироваться. Решите несколько примеров, приведенных ниже. Можете использовать материалы сайта, как справочник. Это позволит вам научиться работать с литературой.

Каждая следующая тема будет более сложной, поэтому желательно тренироваться.

источник

Adblock
detector