Меню Рубрики

Перевод из 16 ти ричной в десятичную

В повседневной жизни мы используем счёт, основанный на десятичной системе счисления. Что это значит? Это значит, что все числа, которыми мы пользуемся, отображаются с помощью всего лишь 10 символов или цифр. Они знакомы нам с детства: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Например, запись числа «девятьсот шестьдесят восемь» состоит из символов, входящих в указанный набор: 968. Так можно отобразить любое число.

Но есть и другие системы счисления. Например, двоичная. Здесь для записи любого числа используется набор всего из двух символов-цифр: 0 и 1. Чтобы записать в этой системе десятичное число 13, понадобятся четыре цифры: 1101. Указанный фокус можно проделать с любым десятичным числом, записав его в виде последовательности символов, входящих в определённый набор. Этот набор является своего рода алфавитом, из букв которого строятся слова-числа.

Свод правил, по которым можно производить те или иные действия с числами, записанными с использованием символов из такого алфавита (сложение, вычитание, умножение, деление и т. д. ), и называют системой счисления (с. с.). А количество всех символов, входящих в набор-алфавит, называют основанием с. с. При записи числа в такой системе место, на котором находится каждая цифра в нём, будет её разрядом. Разряды же нумеруются справа налево от 0 и до бесконечности.

На самом деле, существует бесчисленное множество с. с. Например, количество позиционных с. с., к которым относятся системы с натуральным основанием, бесконечно. Потому что, каким бы огромным числом ни было основание, всегда можно выразить любое число в данной системе счисления. Главное, чтобы хватило символов для его записи. Например, для записи чисел в системе счисления с основанием 666 понадобится алфавит, включающий в себя ровно 666 символов-букв или, если хотите, цифр.

Таким образом, теоретически можно использовать позиционные с. с. с любым натуральным основанием. Но на практике мы используем лишь небольшое их количество. К ним относятся: двоичная, троичная, восьмеричная, десятичная, двенадцатеричная, шестнадцатеричная и шестидесятеричная с. с.

Двоичная используется в программировании, информатике и дискретной математике, десятичная — во всех сферах жизни, где есть необходимость считать и измерять, шестнадцатеричная — также используется в информатике и программировании (особенно, в низкоуровневом, где используются языки ассемблеры), а также в компьютерной документации, шестидесятеричная — в счёте и измерении времени и углов (в частности, географических координат).

Кроме упомянутых, есть и другие системы, не относящиеся к позиционным. Это смешанные и непозиционные с. с., которые мы здесь рассматривать не будем.

Итак, как уже было упомянуто, любое число в позиционной системе с основанием N можно представить последовательностью символов из набора, состоящего из N цифр и букв. В шестнадцатеричной системе таким набором будут цифры от 0 до 9 и латинские буквы A, B, C, D, E, F, ​итого — 16 символов.

Чтобы сделать перевод из десятичной в шестнадцатеричную систему, вовсе не понадобится калькулятор, если вы хотите научиться делать это сами, вручную. Итак, запаситесь терпением и… вперёд!

Возьмём любое число X, записанное в десятичной с. с., целая часть которого [X] равна P, а дробная часть равна Q. Если X 3 +R2•N 2 +R1•N 1 +R0•N 0 +S1•N^(-1)+S2•N^(-2)+S3•N^(-3)+…+Sj•N^(-j)+…+Sn•N^(-n) =Rk…Ri…R2 R1 R0, S1 S2 S3… Sj… Sn=X (10).

В этом выражении коэффициенты N^i (i=0…k) и N^(-j) (j=1…n) называются весовыми коэффициентами разрядов, Riи Sj — цифрами N-ичного числа, i — номером разряда в целой части R, (-j) — номером разряда в дробной части S N-ичного числа Y (R=[Y], S=).

Справа в этом выражении стоит результат сложения всех весовых коэффициентов, умноженных на цифры соответствующих разрядов N-ричного числа Y, который представлен в виде 10-ичного числа Х.

Пользуясь этой теоремой, мы легко сможем переводить шестнадцатеричные числа в десятичные. Для этого нужно просто в приведённую выше формулу подставить N=16. В результате получим следующий алгоритм.

Способ перевода из 16-ричной системы в 10-ичную

  1. Пусть задано 16-ричное число Y (16), имеющее в целой части k+1 цифр, а в дробной — n цифр. Номера разрядов в целой части принимают значения от 0 до k. Умножьте каждую его цифру, начиная с первой перед запятой, на 16 в степени, равной номеру разряда этой цифры. Полученные произведения сложите. Результатом будет целая часть Y в десятичном виде — P=[X].
  2. Умножьте теперь каждую цифру числа Y (16), начиная с первой цифры, стоящей после запятой, на 16 в степени, равной отрицательному номеру разряда этой цифры. Номера разрядов в дробной части идут от -1 до -n. Полученные произведения сложите. Результатом будет дробная часть Y в десятичном виде — Q=.
  3. Сложите целую и дробную части Y в десятичном виде. Вы получите результат — десятичное число X (10)=Y (16).

1. Перевести 1237 (10) в систему с основанием 16.

Решение. Последовательно деля 1237 на 16, мы получим следующие остатки: 5, 13 и 4 (см. алгоритм 1). Чтобы записать 1237 (10) в 16-ричной форме, запишем указанные остатки в обратном порядке, заменив 13 на букву D. Получим: 1237 (10)=4D5 (16). Чтобы убедиться в правильности перевода, произведём проверку (см. алгоритм 3): 4D5 (16)=4•16²+13•16¹+5=1024+208+5=1237 (10).

2. Перевести 0,07080078125 (10) в 16-ричный вид.

Решение. Последовательно умножая 0,07080078125 на 16, отбрасывая целые части получаемых произведений, получим следующий ряд: 1, 2, 2 (см. алгоритм 2). Чтобы записать 0,07080078125 (10) в шестнвдцатиричной форме, запишем указанные цифры в прямом порядке. Получим: 0,07080078125 (10)=0,122 (16). Чтобы убедиться в правильности перевода, сделаем проверку (см. алгоритм 3): 0,122 (16)=1•(1/16¹)+2•(1/16²)+2•(1/16³)=0,0625+0,0078125+0,00048828125= 0,07080078125 (10).

Из видео вы узнаете, как правильно перевести из шестнадцатеричной системы в двоичную.

источник

Число — это абстрактное математическое понятие обозначающее количество. Числа используются для счета. Числа использовались человеком с древнейших времен, вначале в виде счетных палочек или зарубок и черточек на дереве и кости, а потом и в виде более абстрактных систем. Существует много способов выражения чисел и работы с ними; некоторые из них приведены ниже. Системы счисления эволюционировали на протяжении многих веков и не все из них используются по сей день.

Ученые считают, что понятие числа возникло в разных культурах независимо. Символы для обозначения цифр в письменном виде также возникли в каждой культуре отдельно, но постепенно, с развитием торговли, люди начали обмениваться идеями и заимствовать друг у друга принципы счисления или написания чисел. Поэтому те системы счисления, которыми мы сейчас пользуемся, создавались коллективно многими народами.

Арабская система счисления — одна из самых широко используемых систем счисления. Она была заимствована из Индии и доработана персидскими и арабскими математиками. В русском языке эта система называется в основном «арабской», но на других языках, например английском, она чаще называется «индо-арабской». В средние века, особенно ближе к середине и концу этого периода, торговля распространилась по всему миру, и купцы стали привозить в другие страны не только товары, но и сведения о науках, таких как математика. Благодаря этому арабские цифры начали использовать в Европе, сначала в монастырях, а позже и в светском обществе. Папа римский Сильвестр II одним из первых стал использовать и распространять арабские цифры взамен римских, познакомившись с ними благодаря связям с арабскими государствами на территории нынешней Испании. Европейские ученые приспособили и частично изменили написание цифр, и арабская система счисления получила широкое применение не только во всей Европе, но и по всему миру благодаря торговле и во время колонизации других континентов. Арабская система — десятичная, то есть с основанием 10 и с использованием десяти цифр, которыми можно выразить все возможные числа.

Десять — одно из наиболее широко используемых чисел в системах счета, и десятичная система распространена во многих странах. Это связано с тем, что издревле люди пользовались десятью пальцами на руках для счета. До сих пор люди, которые учатся считать или хотят проиллюстрировать пример, связанный со счетом, используют пальцы. Существуют даже такие выражения как «считать на пальцах». В некоторых культурах для счета использовали также и пальцы ног, костяшки пальцев, и даже пространство между пальцами. Интересно, что во многих языках слово, обозначающее пальцы и цифры — одно и то же. Например, в английском, это слово — «digit» (произносится как «диджит»).

Римские цифры использовались в Древнем Риме и Европе примерно до четырнадцатого столетия. Их до сих пор используют в некоторых контекстах, например на циферблатах часов, в именах Папы Римского, в названиях повторяющихся событий, например, олимпийских игр, и так далее. Римская система счисления использует семь букв латинского алфавита для обозначения всех возможных комбинаций чисел:

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Порядок написания цифр важен потому, что большее число слева от меньшего значит, что оба числа необходимо сложить, в то время как меньшее число слева от большего следует вычесть из большего числа. Например, XI равняется одиннадцати, а IX — это 9. Это правило действует только для чисел: IV, IX, XL, XC, CD и CM. В некоторых случаях эти правила не соблюдаются, и числа пишутся в ряд, например XXXXX.

Во многих культурах использовались системы счисления, похожие на римскую и арабскую. Например, в кириллической системе счисления цифры от одного до девяти, десять, и кратные ста писались буквами кириллицы. Также существовал специальный знак, похожий на тильду «

», который писали над такими цифрами, чтобы показать, что это не буквы. Существовала похожая система и с использованием глаголицы. В еврейской системе счисления буквами еврейского алфавита записывали числа от одного до десяти, кратные десяти, сто, двести, триста, и четыреста. Остальные числа писали как сумму или произведение. Греческая система счисления также похожа на все, приведенные выше.

В некоторых культурах системы счисления были проще. Например, вавилонские цифры можно было записать с помощью двух клинописных знаков, обозначавших единицу (похожего на большую букву «Т») и десять (похожего на букву «С»). Так, например, 32 можно записать как «СССТТ», используя соответствующие знаки. Египетская система счисления похожа, только в ней существовали также символы для нуля, сотни, тысячи, десяти тысяч, ста тысяч и миллиона, а также были специальные знаки для записи дробей. Цифры майя записывались с помощью знаков, обозначавших ноль, единицу и пятерку. Числа выше девятнадцати также имели своеобразное написание. В них использовались знаки для одного и пяти, но с другим расположением, чтобы показать, что значение этих цифр — другое.

В единичной или унарной системе счисления используется только один знак, обозначающий единицу. Каждое число записывается с помощью таких знаков, количество которых равно этому числу. Например, если такой знак — буква «А», то число пять можно записать как «ААААА». Унарная система часто используется учителями, которые учат детей считать, потому что она помогает детям понять зависимость между количеством предметов, например счетных палочек или карандашей, и более абстрактного понятия числа. Часто унарную систему используют во время игр, чтобы записывать очки, набранные командами, или для счета дней или предметов. Причем метод записи в разных культурах отличается. Например, во многих странах, где принят латинский алфавит, чаще используются черточки. Обычно четыре вертикальные черточки перечеркивают горизонтальной или диагональной, и продолжают счет с новой группы черточек. В примере А) на рисунке счет доходит до четырех, эти черточки перечеркивают пятой, дальше добавляют еще пять черточек, и опять начинают новый ряд. Так, счет доходит до двенадцати. В странах, где в языке используют или использовали китайские иероглифы, люди обычно рисуют не четыре черточки, перечеркнутые пятой, а специальный иероглиф из пяти штрихов. Последовательность этих штрихов не произвольная, а установлена правилами правописания. В примере В) на рисунке счет доходит то пяти и человек пишет два первых штриха следующего иероглифа, заканчивая счет на семи. Кроме простого счета и учета, унарную систему также используют в компьютерных технологиях и электронике.

В позиционной системе счисления значение каждого знака, обозначающего цифру, зависит от его положения в числе. Это значение также зависит от основания системы счисления. Позиция обычно называется разрядом. Например, число 101 в двоичной системе не равно ста одному в десятичной. Рассмотрим позиционную систему на примере десятичной:

  1. Первый разряд предназначен для единиц, то есть чисел от нуля до девяти. Цифра первого разряда умножается на десять в нулевой степени (то есть на единицу).
  2. Второй разряд предназначен для десятков и цифру во втором разряде умножают на десять в первой степени.
  3. Третий разряд предназначен для сотен и цифру в третьем разряде умножают на десять во второй степени, и так далее, пока не закончатся разряды.

Чтобы получить значение числа, складывают все числа, полученные выше, то есть значения чисел в каждом разряде. Такой способ написания чисел позволяет работать с большими числами, и не занимает так много места в тексте, по сравнению с непозиционными системами счисления.

Пример использования позиционирования в десятичной системе: 3102 = 3 × 10³ + 1 × 10² + 0 × 10¹ + 2 × 10⁰

Двоичная система очень широко используется в математике и вычислительной технике. Все возможные числа представлены в ней с помощью только двух цифр, «0» и «1», хотя в некоторых случаях используют и другие знаки, например «+», «–». При переводе чисел из десятичной системы в двоичную получаем: 0=0, 1=1, а для дальнейшего перевода используют правила сложения. Сложение в двоичной системе основано на том же принципе, что и в десятичной. Чтобы добавить к числу единицу пользуются следующим правилом:

  • Для чисел оканчивающихся нулем, ноль заменяют единицей. Например: 100 (4) + 1 (1) = 101 (5). Здесь и далее для сравнения приведены десятичные числа в скобках.
  • В числе, оканчивающемся единицей, но не состоящем только из единиц, заменяют первый ноль справа на единицу, а все единицы, за ним следующие (справа от него) заменяют нулями. Например: 1011 (11) + 1 (1) = 1100.
  • В числе, состоящем из одних единиц, заменяют нулями все единицы, и в начале (слева) добавляют единицу. Например: 111 (7) + 1 (1) = 1000 (8).

При сложении пишут оба числа одно под другим, как при десятичном сложении. Правила при этом следующие: 0+0=0, 1+0=1, а 1+1=10, при этом в правом разряде пишут 0 и переносят 1 в следующий разряд. Например:

То есть, справа налево получаем:

  • 1+1=0, один переносим в следующий разряд
  • 1+1+1=1, один переносим в следующий разряд
  • 1+1=0, один переносим в следующий разряд
  • 1+1+1=1, один переносим в следующий разряд
  • 1+1=10

Вычитание похоже на сложение, только вместо переноса, наоборот, «занимают» единицу из высших разрядов. Умножение тоже похоже на десятичное. Результат перемножения двух единиц — единица, а умножение на ноль дает ноль. Например:

Деление и взятие квадратного корня также мало отличается от работы с десятичными числами.

Числа объединяются в классы, и некоторые числа могут одновременно входить в несколько классов.

Отрицательные числа обозначают отрицательную величину. Перед ними ставят знак минус, чтобы отличить их от положительных. Например, если человек А должен человеку Б пять рублей, значит у него есть −5 рублей. Здесь –5 — отрицательное число.

Рациональные числа — это те числа, которые можно представить в виде дроби, где знаменатель — это положительное натуральное число, а числитель — целое число. Например, 3/4 и −10/5 (то есть, −2) — рациональные числа.

Натуральные числа это ноль и положительные целые числа. Например, 7 и 86 766 575 675 456 — натуральные числа.

Целые числа — это ноль, отрицательные и положительные числа, не являющиеся дробями. Например, −65 и 11 223 — целые числа.

Комплексные числа получают при сложении действительного (не комплексного) числа и другого действительного числа, умноженного на квадратный корень минус одного. Здесь квадратный корень минус одного называется мнимым числом.

Простые числа — это натуральные числа больше единицы, которые делятся без остатка только на единицу и сами себя. Примеры простых чисел это: 3, 5 и 11. 2 57 885 161 −1 — самое большое известное простое число на февраль 2013 г. В нем содержится 17 425 170 цифр. Простые числа используют в криптосистемах с отрытым ключом. Это вид кодирования применяется в шифровании электронной информации в тех случаях, когда необходимо обеспечить информационную безопасность, например, на сайтах интернет-магазинов, электронных кошельков и банков.

В Китае используют отдельную форму записи чисел для бизнеса и финансовых операций. Обычные иероглифы, используемые для названий чисел, слишком просты, и их легко подделать или переделать, добавив к ним всего несколько штрихов. Поэтому на банковских чеках и других финансовых документах обычно используют особые более сложные иероглифы.

В языках стран, где принята десятичная система счисления, до сих пор сохранились слова, свидетельствующие о том, что ранее там использовалась система с другой основой. Например, в английском языке до сих пор используют слово «дюжина», обозначающее двенадцать. Во многих англоязычных странах в дюжинах считают и продают яйца, мучные изделия, вино и цветы. А в кхмерском языке есть слова для счета фруктов, основанные на двадцатеричной системе.

Арабская система счисления применяется в Китае и Японии, но в отличие от английского, русского, и многих других языков, числа в китайском и японском языках сгруппированы по десять тысяч. То есть, когда в английском или в русском говорят: сто, потом идут кратные сотни, потом тысяча, кратные тысячи, миллион, и так далее, то в японском и китайском языках идут: сто, кратные ста до 9 999, десять тысяч, кратные десяти тысяч до 999 999, 1 000 000, и так далее.

На Западе, а также во многих странах, где исповедуют христианство, 13 считается несчастливым числом. Историки считают, что это связано с христианством и иудаизмом. Согласно Библии, на Тайной Вечере присутствовало именно тринадцать учеников Иисуса, и тринадцатый, Иуда, после предал Христа. У викингов также существовало поверье о том, что когда тринадцать человек собираются вместе, один из них обязательно умрет в следующем году.

В странах, где говорят по-русски, неудачными считаются четные числа. Вероятно, это связано с верованиями древних славян, которые думали, что четные числа — статичны, неподвижны, закончены в одно целое, а значит — мертвые. Нечетные же, наоборот, подвижны, ищут дополнения, изменяются, а значит — живые. Поэтому четное количество цветов приносят только на похороны, но не дарят живым людям.

В Китае, Корее и Японии не любят число 4, потому, что оно созвучно со словом «смерть». Часто избегают не только саму цифру четыре, но и числа, ее содержащие. Например, часто пропускают такие числа в нумерации этажей и квартир. В Китае также не любят число 7, из-за того, что седьмой месяц в китайском календаре — месяц духов. Считается, что в этот месяц граница между мирами людей и духов исчезает, и духи приходят навещать людей. Число 9 считается неудачным в Японии, так как оно созвучно со словом «страдание».

Несчастливое число в Италии — 17, потому что его написание римскими цифрами — «XVII», что можно переписать как «VIXI», изменив порядок букв. Часто эта фраза была написана на могилах древних римлян и означала «я жил», поэтому ассоциируется с концом жизни и со смертью.

666 — известное многим несчастливое число, также именуемое «числом зверя» в Библии. Некоторые считают, что на самом деле «число зверя» — 616, но упоминание о 666 встречается чаще. Многие верят, что этим числом будет обозначен антихрист, наместник дьявола, и иногда ассоциируют это число с самим дьяволом. Так, некоторые убеждены, что 666 и 616 — это зашифрованное имя римского императора Нерона на древнееврейском и латинском языках соответственно, выраженное цифрами. Вероятность действительно существует, так как Нерон известен гонениями христиан и своим кровавым правлением. Некоторые историки даже считают, что именно Нерон являлся инициатором великого пожара Рима, хотя многие историки не согласны с такой трактовкой событий.

В Афганистане, особенно в Кабуле и его окрестностях, распространился слух о том, что число 39 — позорное число, связанное с проституцией. Согласно этому слуху, в Кабуле живет и работает сутенер, чей номерной знак на машине и номер квартиры содержит это число. Некоторые обвиняют правительство и организованные преступные группировки в том, что те специально распустили такой слух, чтобы покупать в Кабуле машины с такими номерными знаками и перепродавать в отдаленных провинциях, до куда не дошел этот слух. Людей с числом 39 в номерном знаке, номере квартиры или телефона дразнят, и насмехаются над ними, и эта проблема настолько серьезна, что многие изменяют цифры на номерных знаках и всячески стараются скрыть причастность к этому числу. Ходят слухи, что ненависть к числу 39 довела до трагедии. Во время выборов в парламент многие насмехались над кандидатом, чей номер в бюллетене был 39. Во время автомобильной пробки ему начали сигналить и кричать, в результате ситуация на дороге ухудшилась и переросла в аварию, и телохранители, опасающиеся за его жизнь, открыли огонь, в результате убив двоих. Парламентарий и его телохранители отрицают причастность к этому происшествию, никого не привлекли к ответственности, и неизвестно, произошло ли событие в действительности, или это только слухи.

источник

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число 6 3 7 2
позиция 3 2 1

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число 1 2 8 7 . 9 2 3
позиция 3 2 1 -1 -2 -3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр <0,1,2,3,4,5,6,7,8,9>, в восьмеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7>, в двоичной системе счисления — из множества цифр <0,1>, в шестнадцатеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F>, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·2 6 + 0 ·2 5 + 1·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 1·2 0 + 0·2 -1 + 0·2 -2 + 1·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
2 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0.428
x 2
0.856
x 2
1 0.712
x 2
1 0.424
x 2
0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0.25
x 2
0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

источник

ОСТОРОЖНО МОШЕННИКИ! В последнее время в социальных сетях участились случаи предложения помощи в написании программ от лиц, прикрывающихся сайтом vscode.ru. Мы никогда не пишем первыми и не размещаем никакие материалы в посторонних группах ВК. Для связи с нами используйте исключительно эти контакты: vscoderu@yandex.ru, https://vk.com/vscode

Системы счисления – одна из самых главных основ информатики. Практически ни в одной школе и ни в одном университете не пропускают данную тему, но зачастую именно с переводом шестнадцатеричной системы у многих возникают проблемы, хотя это не такая уж сложная задача, и её перевод практически не отличается от других систем счисления.

Давайте рассмотрим эту систему поподробнее.

Итак, шестнадцатеричная система счисления, как следует из названия, имеет в своём основании число 16. Почему так? Дело в том, что единица информации в информатике – это бит. Восемь бит образуют байт. Также информационной среде существует такое понятие, как машинное слово – это минимальная единица данных, представляющая собой шестнадцать бит, то есть два байта. Считается, что машинное слово – это минимальная величина разрядности регистров процессора, при которой можно работать с ЭВМ.
Так вот, как мы знаем, компьютер работает на двоичном коде. Однако, если Вы когда-нибудь переводили чиста из двоичной системы в десятичную, то замечали, что в ней бывает довольно много разрядов, особенно при переводе больших чисел, например, перевод числа 5132 в двоичной системе будет записано так:

Как можно увидеть, при переводе в двоичную систему этого числа у нас получилось аж 13 разрядов (с 0 до 12). Довольно муторно, а главное, занимает много места на письме и отнимает много времени для перевода.
Именно для этого придумали восьмеричную и шестнадцатеричную системы счисления, для этого придумали и байты. Эти системы помогают сократить затраты на перевод чисел и привести их к более приятному визуальному виду.
Если перевести то же число 5132 в восьмеричную систему счисления, то получится «более сокращённая версия» двоичного кода:

Как мы видим, количество символов сократилось, так как разрядность уменьшилась до 5 (с 0 до 4).
Как можно уже понять, шестнадцатеричная система ещё сильнее сокращает разрядность (с 0 до 3) и ещё сильнее сжимает на письме переведённое число:

Человеку такой вид записи в любом случае удобнее, чем бесконечные нули и единицы.

Таким образом, шестнадцатеричная система используется довольно широко в современных информационных системах. Например, при помощи неё указываются коды цветовых схем, данная система используется для записи кодов ошибок, а также для программирования на языках низкого уровня типа Ассемблера, шестнадцатеричную систему зачастую используют для предоставления данных и адресов в малоразрядных ЭВМ.

Выше мы уже немного затронули процесс перевода чисел. Теперь мы рассмотрим его подробнее и на примерах.

Но прежде чем начать, надо узнать одну очень важную особенность шестнадцатеричной системы.

Так как система имеет своим основанием число 16, то, следовательно, всего в этой системе имеется 16 цифр, но если первые десять цифр (0-9) вполне привычные для нас, то остальные имеют вид не совсем цифровой, но, тем не менее, являются цифрами, а именно значения A, B, C, D, E, F, которые соответствуют нашим привычным числам с 10 до 15. Все цифры шестнадцатеричной системы и их «аналоги» в десятичной записаны в таблице ниже.

Итак, допустим, у нас есть число 40 563 в десятичной системе счисления. Переведём его в шестнадцатеричную.

  1. Сначала мы просто делим наше исходное число 40 563 на 16 в столбик. В частном у нас получилось 2 535, если умножить это число на 16, то получится 40 560, а в остатке 3. Эту тройку мы выделяем.
  1. Теперь мы делим 2 535, и тоже на 16, и тоже абсолютно таким же образом. Частное – 158, 16*158 = 2 528, а в остатке 7. Остаток так же, как и в тот раз, выделяем.
  1. Делим полученные частные до тех пор, пока они не станут меньше 16 , тогда деление заканчивается. Делим 158 на 16, и находим остаток от этого деления.

Остаток от деления – 14, а частное, полученное при делении 158 на 16 равно 9. Так как 9 меньше 16, то процесс вычислений закончен, а 9 также выделяется.

  1. Процесс преобразования десятичного числа в шестнадцатеричное почти окончен. Для того, чтобы получить его, надо всего лишь выписать выделенные числа справа налево (т.е. в данном случае от девятки к тройке), НО, как мы писали выше, у шестнадцатеричной системы свой особый «алфавит» с 10 по 15. И как раз один из наших «остатков» (число 14) вписывается в этот диапазон, поэтому надо посмотреть в таблице, либо просто самостоятельно посчитать, что в шестнадцатеричной системе 14 будет буквой Е.

Итого весь процесс преобразования приведён на следующем изображении:

Таким образом мы научились переводить числа из десятичной системы в шестнадцатеричную. Теперь давайте попробуем сделать обратное преобразование, но уже с другим числом.

Перевести шестнадцатеричное число в привычное нам десятичное также совсем не сложно, более того, мы уже делали это в самом начале статьи, когда сравнивали двоичную, восьмеричную и шестнадцатеричную системы счислений, теперь же разберём этот процесс более подробно.
Давайте сразу приступим к примеру и переведём шестнадцатеричное число 1C3B3 в десятичную систему.
По сути, процесс перевода можно разделить на 2 этапа:

  1. Мы справа налево отделяем от числа все цифры и умножаем каждую из них на 16, и всё это складываем:

Также обязательно необходимо перевести буквенные обозначения шестнадцатеричной системы в числовые, чтобы можно было посчитать их в десятичном виде, то есть, для данного случая, перевести B в 11 и C в 12.

  1. После того, как мы сделали этот шаг, нам необходимо пронумеровать разряды чисел. Делается это просто – мы приписываем ко всем числам 16, на которые мы умножали наши исходные цифры, степени, начиная с нулевой:

Теперь нам остаётся только перемножить и сложить всё это:

Таким образом, мы превратили шестнадцатеричное число 1C3B3 в десятичное число 115 635.

Как видите, ничего сложного. Также у нас на сайте имеется статья, описывающая процесс перевода чисел из шестнадцатеричной системы в двоичную.
Спасибо за прочтение!

источник

Читайте также:  Аккумулятор центра футура как долить воду