Меню Рубрики

Перевод десятичных дробей в десятичную систему счисления

Основные понятия

Система счисления – это совокупность правил наименования и изображения чисел с помощью набора символов, называемых цифрами.

Используются три типа систем счисления:

· позиционная – представление числа зависит от порядка записи цифр.

· непозиционная – представление числа не зависит от порядка записи цифр

· смешанная – нет понятия «основание»: либо оснований несколько, либо оно вычисляемое

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позициив записи числа.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7∙10 2 + 5∙10 1 + 7∙10 0 + 7∙10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Таблица 1. Эквиваленты чисел в различных системах счислений

Системы счисления
Десятичная Двоичная Восьмеричная Шестнадцатеричная
A
B
C
D
E
F

Преобразование чисел из одной системы счисления в другую

Перевод целого числа из десятичной системы в другую позиционную систему счисления

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Перевод правильной десятичной дроби в любую другую позиционную систему счисления

При переводе правильной десятичной дроби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения.

Умножение производится до тех пор, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный перевод. В противном случае перевод осуществляется до заданной точности.

источник

Перевод целых чисел из одной системы счисления в другую обычно не вызывает проблем. А вот необходимость перевести десятичную дробь или смешанное число (число с целой и дробной частью) из системы в систему часто ставит в тупик даже сильных учеников.

1. Перевод смешанного числа в десятичную систему счисления из любой другой.

Для перевода смешанного числа в десятичную систему из любой другой следует пронумеровать разряды числа, начиная с нуля, справа налево от младшего целого разряда. Разряды дробной части нумеруются слева направо от -1 в убывающем порядке. Теперь представим число в виде суммы произведений его цифр на основание системы в степени разряда числа и ответ готов.

Переведите число 105,4 из восьмеричной системы в десятичную.

Пронумеруем целые разряды числа справа налево от 0, дробные – слева направо от -1 :

Посчитаем сумму произведений цифр числа на 8 (основание системы) в степени разряда числа:

2. Перевод десятичных дробей из десятичной системы счисления в любую другую.

Для перевода десятичной дроби из десятичной системы в любую другую следует умножать дробь, а затем дробные части произведений, на основание новой системы пока дробная часть не станет равной 0 или до достижения указанной точности. Затем целые части выписать, начиная с первой.

Переведите десятичное число 0,816 в двоичную систему с точностью до сотых.

Умножаем дробь 0,816, а затем дробную часть произведения (0,632) на 2 и выписываем целые части, начиная с первой:

Переведите десятичное число 0,8125 в восьмеричную систему.

Умножаем дробь 0,8125, а затем дробную часть произведения (0,5) на 8 и выписываем целые части, начиная с первой:

3. Перевод смешанных чисел из десятичной системы счисления в любую другую

Если необходимо перевести смешанное число из десятичной системы в любую другую, следует перевести целую и дробную части, а затем записать, разделив десятичной запятой.

Пример 4.

Сколько единиц в двоичной записи десятичного числа 14,125?

Переведем целую часть числа в двоичную систему:

Переведем дробную часть числа в двоичную систему:

Соединим целую и дробную части:

Количество единиц равно 4.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
dvd@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

источник

Правила перевода правильных дробей

Напомним, что правильная дробь имеет нулевую целую часть, т.е. у нее числитель меньше знаменателя.

Результат перевода правильной дроби всегда правильная дробь.

Перевод из десятичной системы счисления в двоичную и шестнадцатеричную :

а) исходная дробь умножается на основание системы счисления, в которую переводится (2 или 16);

б) в полученном произведении целая часть преобразуется в соответствии с таблицей в цифру нужной системы счисления и отбрасывается – она является старшей цифрой получаемой дроби;

в) оставшаяся дробная часть (это правильная дробь) вновь умножается на нужное основание системы счисления с последующей обработкой полученного произведения в соответствии с шагами а) и б);

г) процедура умножения продолжается до тех пор, пока ни будет получен нулевой результат в дробной части произведения или ни будет достигнуто требуемое количество цифр в результате;

д) формируется искомое число: последовательно отброшенные в шаге б) цифры составляют дробную часть результата, причем в порядке уменьшения старшинства.

Пример 1 . Выполнить перевод числа 0,847 в двоичную систему счисления. Перевод выполнить до четырех значащих цифр после запятой.

Таким образом, 0,847 = 0,1101 2 .

В данном примере процедура перевода прервана на четвертом шаге, поскольку получено требуемое число разрядов результата. Очевидно, это привело к потере ряда цифр.

Пример 2. Выполнить перевод числа 0,847 в шестнадцатеричную систему счисления. Перевод выполнить до трех значащих цифр.

В данном примере также процедура перевода прервана.

Таким образом, 0,847 = 0,D8D 16 .

Перевод из двоичной и шестнадцатеричной систем счисления в десятичную.

В этом случае рассчитывается полное значение числа по формуле , причем коэффициенты a i принимают десятичное значение в соответствии с таблицей .

Пример 3 . Выполнить перевод из двоичной системы счисления в десятичную числа 0,1101 2 .

0,1101 2 = 1*2 -1 + 1*2 -2 + 0*2 -3 +1*2 -4 = 0,5 + 0,25 + 0 + 0,0625 = 0,8125.

Расхождение полученного результата с исходным числом (см. пример 1 ) вызвано тем, что процедура перевода в двоичную дробь была прервана.

Таким образом, 0,1101 2 = 0,8125.

Пример 4 . Выполнить перевод из шестнадцатеричной системы счисления в десятичную числа 0,D8D 16 .

0,D8D 16 = 13*16 -1 + 8*16 -2 + 13*16 -3 = 13*0,0625 + 8*0,003906 + 13* 0,000244 = 0,84692.

Расхождение полученного результата с исходным числом (см. пример 2 ) вызвано тем, что процедура перевода в шестнадцатеричную дробь была прервана.

Таким образом, 0,D8D 16 = 0,84692.

Перевод из двоичной системы счисления в шестнадцатеричную:

а) исходная дробь делится на тетрады, начиная с позиции десятичной точки вправо. Если количество цифр дробной части исходного двоичного числа не кратно 4, оно дополняется справа незначащими нулями до достижения кратности 4;

Читайте также:  Как правильно сажать виноград осенью черенками

б) каждая тетрада заменяется шестнадцатеричной цифрой в соответствии с таблицей .

Пример 5 . Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,1101 2 .

В соответствии с таблицей 1101 2 = D 16 . Тогда 0,1101 2 = 0,D 16 .

Пример 6 . Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,0010101 2 .

Поскольку количество цифр дробной части не кратно 4, добавим справа незначащий ноль:

В соответствии с таблицей 0010 2 = 10 2 = 2 16 и 1010 2 = A 16 .

Перевод из шестнадцатеричной системы счисления в двоичную:

а) каждая цифра исходной дроби заменяется тетрадой двоичных цифр в соответствии с таблицей ;

б) незначащие нули отбрасываются.

Пример 7 . Выполнить перевод из шестнадцатеричной системы счисления в двоичную числа 0,2А 16.

По таблице имеем 2 16 = 0010 2 и А 16 = 1010 2 .

Тогда 0,2А 16 = 0,00101010 2 .

Отбросим в результате незначащий ноль и получим окончательный ответ: 0,2А 16 = 0,0010101 2

источник

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число 6 3 7 2
позиция 3 2 1

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число 1 2 8 7 . 9 2 3
позиция 3 2 1 -1 -2 -3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр <0,1,2,3,4,5,6,7,8,9>, в восьмеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7>, в двоичной системе счисления — из множества цифр <0,1>, в шестнадцатеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F>, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·2 6 + 0 ·2 5 + 1·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 1·2 0 + 0·2 -1 + 0·2 -2 + 1·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
2 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0.428
x 2
0.856
x 2
1 0.712
x 2
1 0.424
x 2
0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0.25
x 2
0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

источник

Способ, придуманный за много веков до изобретения компьютеров одним древнегреческим математиком, с успехом используется и сегодня, и называется он алгоритмом Евклида. Согласно этому алгоритму, для преобразования числа из десятеричной системы в двоичную необходимо это число делить на 2, выписывая остаток до достижения нуля. Но объяснять всегда лучше на примере. Возьмем произвольное десятеричное число. Например, 159:
159 : 2 = 79 (ост. 1)

1 : 2 = 0 (ост. 1)
Собираем двоичное число из всех выдавшихся при решении остатков, начиная с конца, в итоге у нас получилось двоичное число 100111111.

Для микросхем компьютера важно лишь одно. Либо сигнал есть (1), либо его нет (0). Но записывать программы в двоичном коде — дело нелегкое. На бумаге получаются очень длинные комбинации из нулей и единиц. Человеку читать их тяжело.

Использование привычной всем десятичной системы в компьютерной документации и программировании очень неудобно. Преобразования из двоичной в десятичную системы и обратно — весьма трудоемкие процессы.

Происхождение восьмеричной системы, так же как и десятичной, связывают со счетом на пальцах. Но считать нужно не пальцы, а промежутки между ними. Их как раз восемь.

Решением проблемы стала восьмеричная система счисления. По крайней мере на заре компьютерной техники. Когда разрядность процессоров была невелика. Восьмеричная система позволила с легкостью переводить как двоичные числа в восьмеричные, так и наоборот.

Восьмеричная система счисления — система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Во всех системах счисления, кроме десятичной, знаки читаются по одному. Например, в восьмеричной системе число 610 произносится «шесть, один, ноль».

Если вы хорошо знаете двоичную систему счисления, то можно и не запоминать соответствие одних чисел другим.

Двоичная система ничем не отличается от любой другой позиционной системы. Каждый разряд числа имеет свой предел. Как только предел достигнут, текущий разряд обнуляется, а перед ним появляется новый. Только одно замечание. Предел этот очень мал и равен единице!

Все очень просто! Ноль предстанет группой из трех нулей — 000, 1 обернется последовательностью 001, 2 превратится в 010 и т.д.

В качестве примера попробуйте преобразовать восьмеричное число 361 в двоичное.
Ответ — 011 110 001. Или, если отбросить незначащий ноль, то 11110001.

Перевод из двоичной системы в восьмеричную аналогичен описанному выше. Только начинать разбиение на тройки нужно с конца числа.

источник

Способ, придуманный за много веков до изобретения компьютеров одним древнегреческим математиком, с успехом используется и сегодня, и называется он алгоритмом Евклида. Согласно этому алгоритму, для преобразования числа из десятеричной системы в двоичную необходимо это число делить на 2, выписывая остаток до достижения нуля. Но объяснять всегда лучше на примере. Возьмем произвольное десятеричное число. Например, 159:
159 : 2 = 79 (ост. 1)

1 : 2 = 0 (ост. 1)
Собираем двоичное число из всех выдавшихся при решении остатков, начиная с конца, в итоге у нас получилось двоичное число 100111111.

Читайте также:  Как сохранить репчатый лук в домашних условиях

Для микросхем компьютера важно лишь одно. Либо сигнал есть (1), либо его нет (0). Но записывать программы в двоичном коде — дело нелегкое. На бумаге получаются очень длинные комбинации из нулей и единиц. Человеку читать их тяжело.

Использование привычной всем десятичной системы в компьютерной документации и программировании очень неудобно. Преобразования из двоичной в десятичную системы и обратно — весьма трудоемкие процессы.

Происхождение восьмеричной системы, так же как и десятичной, связывают со счетом на пальцах. Но считать нужно не пальцы, а промежутки между ними. Их как раз восемь.

Решением проблемы стала восьмеричная система счисления. По крайней мере на заре компьютерной техники. Когда разрядность процессоров была невелика. Восьмеричная система позволила с легкостью переводить как двоичные числа в восьмеричные, так и наоборот.

Восьмеричная система счисления — система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Во всех системах счисления, кроме десятичной, знаки читаются по одному. Например, в восьмеричной системе число 610 произносится «шесть, один, ноль».

Если вы хорошо знаете двоичную систему счисления, то можно и не запоминать соответствие одних чисел другим.

Двоичная система ничем не отличается от любой другой позиционной системы. Каждый разряд числа имеет свой предел. Как только предел достигнут, текущий разряд обнуляется, а перед ним появляется новый. Только одно замечание. Предел этот очень мал и равен единице!

Все очень просто! Ноль предстанет группой из трех нулей — 000, 1 обернется последовательностью 001, 2 превратится в 010 и т.д.

В качестве примера попробуйте преобразовать восьмеричное число 361 в двоичное.
Ответ — 011 110 001. Или, если отбросить незначащий ноль, то 11110001.

Перевод из двоичной системы в восьмеричную аналогичен описанному выше. Только начинать разбиение на тройки нужно с конца числа.

источник

Разберем одну из важнейших тем по информатике — Системы счисления. В школьной программе она раскрывается довольно «скромно», скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления, являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления, даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления. На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

Непозиционные системы счисления — системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр — латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

Позиционные системы счисления — системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает «семь сотен», но эта же цифра в числе 71 означает «семь десятков», а в числе 7020 — «семь тысяч».

Каждая позиционная система счисления имеет свое основание. В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.


    Например:
  • Двоичная — позиционная система счисления с основанием 2.
  • Четверичная — позиционная система счисления с основанием 4.
  • Пятиричная — позиционная система счисления с основанием 5.
  • Восьмеричная — позиционная система счисления с основанием 8.
  • Шестнадцатиричная — позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме «Системы счисления», ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 1610:

10 с/с 2 с/с 8 с/с 16 с/с
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот «переход единицы» как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки — разные вещи.

Отсюда у находчивых учеников появляются «свои методики» (на удивление. работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе: К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток — 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, . 27, 30, . 77, 100, 101.

Далее последовательно разбирается перевод систем счисления.

Число нужно разделить на новое основание системы счисления. Первый остаток от деления — это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример («деление уголком»): Переведем число 17310 в восьмеричную систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть — старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности («. вычислить с точностью, например, двух знаков после запятой»).

Пример: Переведем число 0,6562510 в восьмеричную систему счисления.

Переводим отдельно целую часть, отдельно дробную — записываем в одно число.

Пример: Переведем число 17,2510 в восьмеричную систему счисления.

По аналогии с пунктом 1: 1710 = 218

По аналогии с пунктом 2: 0,2510 = 0,28

«Склеиваем» два числа и получаем ответ: 17,2510 = 21,28.

Числа необходимо представить в разложении по степеням той системы счисления, в которой находится число, при чем цифры числа необходимо записать в десятичном эквиваленте. Найти арифметическую сумму.

Пример: Переведем число 1011,012 в десятичную систему счисления.

1) Чтобы представить число в разложении по степеням, нужно найти запятую и проставить «карандашиком» влево и вправо от запятой степени над цифрами числа (слева — неотрицательные степени, т.е. начинаем с нуля; справа — отрицательные, начиная с -1):

1 3 0 2 1 1 1 0 , 0 -1 1 -2 2

2) Далее умножаем каждую цифру на основание системы счисления, в которой находится число, возведенное в соответствующую «подписанную» степень (помним, что любое число в нулевой степени — это единица):

1011,012 = 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 + 0*2 -1 + 1*2 -2 =
= 8 + 0 + 2 + 1 + 0 + 1/2 2 = 11 + 1/4 = 11 + 0,25 = 11,2510

Каждую цифру восьмеричного числа нужно заменить соответствующей двоичной триадой ( * * * ) — например, для цифры 7 — 111, для 3 — 011. Незначащие нули можно отбросить.

Пример: Переведем число 274,068 в двоичную систему счисления.

Просто заменяем все числа триадами:

2 7 4, 0 6 -> 010 111 100, 000 110

Несложно догадаться, что на этот раз мы просто разбиваем число на триады и заменяем восьмеричными цифрами (помним, что разбивать начинаем «от запятой» влево и вправо; там, где не хватает дополняем незначащими нулями).

Пример: Переведем число 1111,01100112 в восьмеричную систему счисления.

Разбиваем на триады и заменяем:

Да это же степень, в которую нужно возвсти двойку, чтобы получить основание 8!

Очевидно, что для шестнадцатиричной системы счисления появятся тетрады («тетра» — четыре) и т.д.

4 = 2 2
8 = 2 3 Триады
16 = 2 4 Тетрады
32 = 2 5

Перевод чисел из двоичной системы счисления в шестнадцатиричную и обратно выглядит так же, как и для пути «восьмеричная двоичная». Отличие состоит лишь в использовании тетрад ( * * * * ).

Пример: Переведем число CD2,0416 в двоичную систему счисления.

источник

Перевод десятичных дробей в двоичную систему счисления заключается в поиске целых частей при умножении на 2.

Пример. Переведем десятичную дробь 0,322 в двоичную систему счисления.

Чтобы найти первую после запятой цифру двоичной дроби, нужно умножить заданное число на 2 и выделить целую часть произведения.

0.322*2=0.644 0 8:2=4 остаток 0

0.644*2=1.288 1 4:2=2 остаток 0

0.288*2=0.576 0 2:2=1 остаток 0

0.576*2=1.152 1 1:2=0 остаток 1

Ответ:

0,322210=0.01012 0.83*2=1.66 целая часть равна 1

0.66*2=1.32 целая часть равна 1

0.32*2=0.64 целая часть равна 0

0.64*2=1.28 целая часть равна 1

Перевод десятичных чисел в восьмеричную систему счисления

Для перевода числа из десятичной системы в восьмеричную применяется тот же прием, что и при переводе в двоичную систему.

Преобразуемое число делят на 8 по правилам десятичной системы с запоминанием остатка, который, конечно, не превышает 7. Если полученное частное больше 7, его тоже делят на 8, сохраняя остаток.

Решение:

(старшая цифра двоичного числа).

Перевод десятичных чисел в шестнадцатиричную систему счисления

Аналогично преобразуют десятичное число в шестнадцатеричное с той лишь разницей, что это число вместо 8 делят на 16.

Пример: Число 891 перевести из десятичной системы в шестнадцатеричную систему счисления.

Самостоятельная работа студента с преподователям:

1. Задание: Представьте виде суммы степеней основания числа:

2. Задание:Переводите десятичные числа в двоичную систему счисления:

3. Задание:Переводите дробные десятичные числа в двоичную систему счисления:

4. Задание:Переводите десятичные числа в восьмеричную систему счисления:

5. Задание:Переводите десятичные числа в шестнадцатиричную систему счисления:

Контрольные вопросы:

1. Что называют системой счисления?

2. В чем отличие позиционных систем счисления от непозиционных?

3. Что называют основанием позиционной системы счисления?

Лабораторная работа №2

Тема занятия: Двоичная система счисления. Перевод чисел из двоичной системы в восьмеричную, шестнадцатиричную систему счисления. Арифметические действия над двоичными числами. (1 час), СРС (2час).

В компьютерах применяется, как правило, не десятичная, а позиционная двоичная система счисления, т.е. система счисления с основанием 2. В двоичной системе любое число записывается с помощью двух цифр 0 и 1 и называется двоичным числом.

Для того чтобы отличить двоичное число от десятичного, содержащего только цифры 0 и1, к записи двоичного числа в индексе добавляется признак двоичной системы счисления, например 110101,1112. Каждый разряд (цифру) двоичного числа называют битом.

Как и десятичное число, любое двоичное число можно записать в виде суммы, явно отражающей различие весов цифр, входящих в двоичное число 2. Например, для двоичного числа 1010101,101 сумма примет вид

1010101,1012 =1*2 6 +0*2 5 +1*2 4 +0*2 3 +1*2 2 +0*2 1 +1*2 0 +1*2 -1 +0*2 -2 +1*2 -3

Эта сумма записывается по тем же правилам, что и сумма для десятичного числа. В данном примере двоичное числа имеет семизначную целую и трехзначную дробную части. Поэтому старшая цифра целой части, т.е. единица, умножается на 2 7-1 =2 6 , следующая цифра целой части, равная нулю, умножается на 2 5 и т.д. по убывающим степеням двойки до младшей, третьей, цифры дробной части, которая будет умножена на 2 -3 . Выполняя в этой сумме арифметические операции по правилам десятичной системы, получим десятичное число 85,625. Таким образом, двоичное число 1010101,101 совпадает с десятичным числом 85,625 или 1010101,101=85,62510

1. 111000112=1×2 7 +1×2 6 +1×2 5 +0×2 4 +0×2 3 +0×2 2 +1×2 1 +1×2 0 = 128+64+32+2+1=22710

2. 0,101000112=1×2 -1 +0×2 -2 +1×2 -3 +0×2 -4 +0×2 -5 +0×2 -6 +1×2 -7 +1×2 -8 =0,5+0,125+0,0078+0,0039 =0,636710

Дата добавления: 2017-03-18 ; просмотров: 1079 | Нарушение авторских прав

источник

Возьмем любое восьмеричное число, например 67,58. Запи­шем его в развернутой форме и произведем вычисления:

Перевод чисел из шестнадцатеричной системы в деся­тичную.Возьмем любое шестнадцатеричное число, например 19F16. Запишем его в развернутой форме (при этом необходи­мо помнить, что шестнадцатеричная цифра F соответствует десятичному числу 15) и произведем вычисления:

2.7.2. Перевод чисел из десятичной системы в двоичную, восьмеричную и шестнадцатеричную

Перевод чисел из десятичной системы в двоичную, восьме­ричную и шестнадцатеричную более сложен и может осуще­ствляться различными способами. Рассмотрим один из алго­ритмов перевода на примере перевода чисел из десятичной системы в двоичную. При этом необходимо учитывать, что алгоритмы перевода целых чисел и правильных дробей будут различаться.

Алгоритм перевода целых десятичных чисел в двоичную систему счисления.Пусть А — целое десятичное число. За­пишем его в виде суммы степеней основания 2 с двоичными коэффициентами. В его записи в развернутой форме будут отсутствовать отрицательные степени основания (числа 2):

На первом шаге разделим число Ацд на основание двоич­ной системы, то есть на 2. Частное от деления будет равно:

На втором шаге целое частное опять разделим на 2, оста­ток от деления будет теперь равен av

Если продолжать этот процесс деления, то после п-го шага получим последовательность остатков:

Легко заметить, что их последовательность совпадает с обратной последовательностью цифр целого двоичного чис­ла, записанного в свернутой форме:

Таким образом, достаточно записать остатки в обратной по­следовательности, чтобы получить искомое двоичное число.

Алгоритм перевода целого десятичного числа в двоичное будет следующим:

1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на осно­вание системы (на 2) до тех пор, пока не получится част­ное, меньшее делителя, то есть меньшее 2.

2. Записать полученные остатки в обратной последователь­ности.

В качестве примера рассмотрим перевод десятичного чис­ла 19 в двоичную систему, записывая результаты в таблицу:

В результате получаем двоичное число:

Алгоритм перевода правильных десятичных дробей в двоичную систему счисления.Пусть А — правильная деся­тичная дробь. В ее записи в развернутой форме будут отсут-ствать положительные степени основания (числа 2):

На первом шаге умножим число Адд на основание двоич­ной системы, то есть на 2. Произведение будет равно:

Целая часть будет равна а-1

На втором шаге оставшуюся дробную часть опять умно­жим на 2, получим целую часть, равную а-2.

Описанный процесс необходимо продолжать до тех пор, пока в результате умножения мы не получим нулевую дроб­ную часть или не будет достигнута требуемая точность вы­числений.

Легко заметить, что последовательность полученных чи­сел совпадает с последовательностью цифр дробного двоич­ного числа, записанного в свернутой форме:

Алгоритм перевода правильной десятичной дроби в дво­ичную будет следующим:

1. Последовательно выполнять умножение исходной деся­тичной дроби и получаемых дробных частей произведе­ний на основание системы (на 2) до тех пор, пока не получится нулевая дробная часть или не будет достигнута требуемая точность вычислений.

2. Записать полученные целые части произведения в пря­мой последовательности.

В результате получаем двоичную дробь:

В качестве примера рассмотрим перевод десятичной дроби 0,75 в двоичную систему, записывая результаты в таблицу:

Перевод чисел из системы с основанием р в систему с основанием q.Перевод чисел из позиционной системы с про­извольным основанием р в систему с основанием q произво­дится по алгоритмам, аналогичным рассмотренным выше.

Рассмотрим алгоритм перевода целых чисел на примере перевода целого десятичного числа А10 = 42410 в шестнадцатеричную систему, то есть из системы счисления с основани­ем р = 10 в систему счисления с основанием q = 16.

В процессе выполнения алгоритма необходимо обратить внимание, что все действия необходимо осуществлять в ис­ходной системе счисления (в данном случае десятичной), а полученные остатки записывать цифрами новой системы счисления (в данном случае шестнадцатеричной).

В результате получаем шестнадцатеричное число:

Рассмотрим теперь алгоритм перевода дробных чисел на примере перевода десятичной дроби А10 = 0,625 в восьме­ричную систему, то есть из системы счисления с основанием р = 10 в систему счисления с основанием q — 8.

В процессе выполнения алгоритма необходимо обратить внимание, что все действия необходимо осуществлять в ис­ходной системе счисления (в данном случае десятичной), а полученные остатки записывать цифрами новой системы счисления (в данном случае восьмеричной).

В результате получаем восьмеричную дробь:

Перевод чисел, содержащих и целую и дробную части, производится в два этапа. Отдельно переводится по соответ­ствующему алгоритму целая часть и отдельно — дробная. В итоговой записи полученного числа целая часть от дробной отделяется запятой.

2.7.3. Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Перевод чисел между системами счисления, основания которых являются степенями числа 2 (q = 2″), может произ­водиться по более простым алгоритмам. Такие алгоритмы могут применяться для перевода чисел между двоичной (q = 2 1 ), восьмеричной (q = 2 3 ) и шестнадцатеричной (q = 2 4 ) системами счисления.

Перевод чисел из двоичной системы счисления в восьме­ричную.Для записи двоичных чисел используются две циф­ры, то есть в каждом разряде числа возможны 2 варианта записи. Решаем показательное уравнение:

2 = 2 1 . Так как 2 = 2 1 , то / = 1 бит.

Каждый разряд двоичного числа содержит 1 бит информа­ции.

Для записи восьмеричных чисел используются восемь цифр, то есть в каждом разряде числа возможны 8 вариан­тов записи. Решаем показательное уравнение:

8 = 2 1 . Так как 8 = 2 3 , то I = 3 бита. Каждый разряд восьмеричного числа содержит 3 бита информации.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в вось­меричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то необходимо ее дополнить слева нуля­ми.

Переведем таким способом двоичное число 1010012в вось­меричное:

Для упрощения перевода можно заранее подготовить таб­лицу преобразования двоичных триад (групп по 3 цифры) в восьмеричные цифры:

Для перевода дробного двоичного числа (правильной дро­би) в восьмеричное необходимо разбить его на триады слева направо и, если в последней, правой, группе окажется мень­ше трех цифр, дополнить ее справа нулями. Далее необходи­мо триады заменить на восьмеричные числа.

Например, преобразуем дробное двоичное число А2 = = 0,1101012 в восьмеричную систему счисления:

Получаем:

Перевод чисел из двоичной системы счисления в шест-надцатеричную.Для записи шестнадцатеричных чисел ис­пользуются шестнадцать цифр, то есть в каждом разряде числа возможны 16 вариантов записи. Решаем показатель­ное уравнение:

16 = 2 1 . Так как 16 = 2 4 , то / = 4 бита.

Каждый разряд шестнадцатеричного числа содержит 4 бита информации.

Таким образом, для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры (тетрады), начиная справа, и, если в последней левой группе окажется меньше четырех цифр, дополнить ее слева нулями. Для перевода дробного двоичного числа (правиль­ной дроби) в шестнадцатеричное необходимо разбить его на тетрады слева направо и, если в последней правой группе окажется меньше четырех цифр, то необходимо дополнить ее справа нулями.

Затем надо преобразовать каждую группу в шестнадцатеричную цифру, воспользовавшись для этого предварительно составленной таблицей соответствия двоичных тетрад и шестнадцатеричных цифр.

Переведем целое двоичное число А2 = 1010012в шестнадцатеричное:

В результате имеем: А16 = 2916.

Переведем дробное двоичное число А2 = 0,1101012в шест-надцатеричную систему счисления

Получаем:

Для того чтобы преобразовать любое двоичное число в восьмеричную или шестнадцатеричную системы счисле­ния, необходимо произвести преобразования по рассмот­ренным выше алгоритмам отдельно для его целой и дроб­ной частей.

Перевод чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную.Для перевода чисел из вось­меричной и шестнадцатеричной систем счисления в двоич­ную необходимо цифры числа преобразовать в группы дво­ичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трех двоичных цифр (триаду), а при преобразовании шестнадцатеричного числа — в группу из четырех цифр (тетраду).

Например, преобразуем дробное восьмеричное число А8 = = 0,478 в двоичную систему счисления:

Переведем целое шестнадцатеричное число А16 = АВ16 в двоичную систему счисления:

2.16.Составить таблицу соответствия двоичных тетрад и шестнадцатеричных цифр.

2.17.Перевести в восьмеричную и шестнадцатеричную системы счисления следующие целые числа: 11112,10101012 .

2.18.Перевести в восьмеричную и шестнадцатеричную системы счисления следующие дробные числа: 0,011112,0,101010112 .

2.19.Перевести в восьмеричную и шестнадцатеричную системы счисления следующие числа: 11,012, 110,1012.

2.20.Перевести в двоичную систему счисления следующие числа: 46,278, EF,1216.

2.21.Сравнить числа, выраженные в различных системах счисле­ния: 11012 и D16; 0,111112и0,228; 35,638и 16,С16.

Арифметические операции в восьмеричной и шестнадца-теричной системах счисления.Аналогично можно выполнять арифметические действия в восьмеричной и шестнадцатерич-ной системах счисления. Необходимо только помнить, что ве­личина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходи­мо предварительно перевести их в одну и ту же систему.

Последнее изменение этой страницы: 2016-12-10; Нарушение авторского права страницы

источник