Меню

Как найти координаты центра описанной окружности

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки

В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву , правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.

Даны вершины треугольника, нужно найти координаты центра окружности, описанной вокруг его вершин.



как проще решать такую задачу?
Можно составить систему уравнений!
Путь — координаты центра окружности
— ее радиус

но решать такую систему как-то не круто, есть альтернатива?!
Понятно, что система из 3 уравнений, три неизвестных, нормально решается, но.

Модератор

Заморожен

Заслуженный участник

Заморожен

Что они сводятся одно к другому — не спорю, а вот проще ли?

Для точек с координатами и серединный перпендикуляр описывается уравнением

Таким образом, нужно всего лишь найти точку пересечения двух прямых, уравнения которых пишутся сразу.

Спасибо! Решил систему. Радиус не стал находить!
серединный перпендикуляр — посложнее будет.

Координаты центра окружности вышли

Последний раз редактировалось kalin 23.02.2017, 01:51, всего редактировалось 2 раз(а).

Модератор

Модератор

! kalin
Замечание за обсуждение работы модератора в не предназначенном для этого разделе.

Формула выводится в течение пары десятков (от силы) минут самостоятельно в общем виде. Отсутствие решения задачи в Википедии не равносильно тому, что оно неизвестно или его нельзя получить.

Последний раз редактировалось kalin 23.02.2017, 14:02, всего редактировалось 1 раз.

Модератор

Я как-то сомневаюсь, что у трех профессоров возникли бы проблемы с решением линейной системы двух уравнений, по составлению которой они дали исчерпывающие указания.

Во избежание дальнейших недоразумений настоятельно рекомендуется ознакомиться с правилами форума.
Тема закрыта до ознакомления.

Сейчас этот форум просматривают: нет зарегистрированных пользователей

источник

Как найти координаты центра окружности, описанной около треугольника, знаякоординаты его вершин. Построение этой окружности

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

ТЕМА: КАК НАЙТИ КООРДИНАТЫ ЦЕНТРА ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА, ЗНАЯКООРДИНАТЫ ЕГО ВЕРШИН. ПОСТРОЕНИЕ ЭТОЙ ОКРУЖНОСТИ.

Работу выполнила ученица 9 класса

МОУ «Лицей №1 пос. Львовский»

История появления координатной плоскости.

Координаты середины отрезка.

Окружность, описанная около треугольника.

Окружность вписанная в треугольник.

Доказательство тождества tg (90 0 + a )=- ctga .

Как найти координаты центра окружности, описанной около треугольника, зная координаты его вершин. Построение этой окружности.

Список используемой литературы.

Данная работа носит исследовательский характер.

Выведенные формулы с доказательством позволяют решать новые, еще не встречавшиеся задачи. Школьная программа не включает в себя решение наиболее сложных задач, связанных с координатной плоскостью, и мы предлагаем расширить круг знаний в этой области. Задачи, связанные с этими формулами, можно использовать как олимпиадные задачи, а также они будут интересны учащимся, изучающим курс математики, выходящий за рамки школьного курса.

Здесь предложена одна из задач на выбранную нами тему. Она связана с описанной окружностью, но можно составить задачи и на вписанную окружность, и на нахождение точки пересечения медиан, высот, биссектрис на координатной плоскости.

Данная работа направлена на расширение круга знаний ученика.

История появления координатной плоскости.

Более чем 100 лет до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами и ввести хорошо теперь известные географические координаты: широту и долготу – и обозначить их числами.

В 14 веке французский математик Н. Оресм ввел, по аналогии с географическими, координаты на плоскости. Он предложил покрыть плоскость прямоугольной сеткой и назвать широтой и долготой то, что мы теперь называем абсциссой и ординатой.

Это нововведение оказалось чрезвычайно продуктивным. На его основе возник метод координат, связавший геометрию с алгеброй. Основная заслуга в создании метода координат принадлежит французскому математику Р. Декарту. Такую систему координат стали называть декартовой. Точку О пересечения прямых называют началом координат, а сами направленные прямые – осями, ось Ох – осью абсцисс, а ось Оу – осью ординат. Числа х, у называют декартовыми координатами точки (х; у). точка плоскости – геометрический объект – заменяется парой чисел (х;у), т.е. алгебраическим объектом. Принадлежность точки заданной кривой теперь соответствует тому, что числа х и у удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (а;в) удовлетворяют уравнению (х-а) 2 +(у-в) 2 =R 2 .

Координатная плоскость состоит из двух перпендикулярных прямых X и Y , которые пересекаются в начале отсчета – точке О и на них обозначен единичный отрезок (смотри рис.). эти прямые называют системой координат на плоскости, а точку О – началом координат. Плоскость, на которой выбрана система координат, называют координатной плоскостью.

Пусть А – некоторая точка плоскости. Проведем через нее прямую M А , перпендикулярно координатной прямой Х , и прямую LA , перпендикулярную координатной прямой Y . Т.к. точка М имеет координату 5, а точка L координату 4, то положение точки А определяется парой чисел (5;4). Эту пару чисел называют координатами точки А. Число 5 называют абсциссой точки А, а число 4 называют ординатой точки А. К оординатную прямую Х называют осью абсцисс, а координатную прямую Y — осью ординат. Точку А с абсциссой 5 и ординатой 4 обозначают так: А (5;4 ). При этом всегда на первом месте пишут абсциссу точки, а на втором месте её ординату. Если переставить местами координаты, то получится другая точка N (4;5), которая показана на рисунке.

Читайте также:  Как сохранить виноградник зимой

Каждой точке А на координатной плоскости соответствует пара чисел: ее абсцисса и ордината. Наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

КООРДИНАТЫ СЕРЕДИНЫ ОТРЕЗКА.

где А (х 1 ;у 1 ) и В(х 2 ;у 2 ) – концы отрезка.

А (х 1 ;у 1 ) и В(х 2 ;у 2 ) – произвольные точки плоскости Оху.

y

А у А(х 1 ;у 1 )

С у С (х;у)

В у В(х 2 ;у 2 )

Пусть АВ не параллелен оси Оу, т.е. х 1 ≠х 2. проведем через точки А,В,С прямые, параллельные оси Оу. Они пересекут ось Ох в точках А(х 1 ;0), В(х 2 ;0), С(х;0). По теореме Фалеса точка С х – середина отрезка [А х В х ], то есть А х С х = С х В х или отсюда либо х-х 1 =х-х 2 , либо х-х 1 =-(х-х 2 ). Первое равенство невозможно, т.к. х 1 ≠х 2, а второе дает . Если х 1 =х 2, то х=х 1 =х 2 и равенство остается верным. Ордината точки С находится аналогичными построениями и рассуждениями.

Следовательно, теорема доказана.

Если А 1 (х 1 ;у 1 ) и А 2 (х 2 ;у 2 ) две произвольные точки плоскости Оху, а d –расстояние между ними, то d вычисляется из соотношения .

Утверждение теоремы следует из определения проекции отрезка и теоремы Пифагора.

Уравнение вида называется общим уравнением прямой.

Угол α, определяемый, как показано на рисунке, называется углом наклона прямой к оси Ох. Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой; его обычно обозначают буквой k: k=tgα

y

α b x

Уравнение y=kx+b называется уравнением прямой с угловым коэффициентом; k – угловой коэффициент, b – величина отрезка, который отсекает прямая на оси Оу, считая от начала координат.

Уравнение вида ax+by+c=0 при условии, что a и b одновременно не равны нулю, задает прямую в плоскости Оху, и наоборот, уравнение произвольной прямой может быть записано в указанном виде.

Пусть b≠0. Тогда уравнение прямой можно переписать в виде y=kx+b.

Число k называется угловым коэффициентом прямой и равно тангенсу угла между положительной полуосью абсцисс и лучом прямой, лежащей в одной с положительной полуосью ординат полуплоскости относительно оси абсцисс.

Уравнение окружности ω(А;R) имеет вид

, где а и b- координаты центра А окружности ω(А;R).

Пусть дана окружность ω(А;R) на плоскости Оху, где А, центр окружности – имеет координаты а и b, по определению окружности для любой точки В(х;у), лежащей на окружности ω(А;R), верно АВ=R. Но в соответствии с теоремой: Если А 1 (х 1 ;у 1 ) и А 2 (х 2 ;у 2 ) две произвольные точки плоскости Оху, а d –расстояние между ними, то d вычисляется из соотношения .

АВ 2 . Таким образом, координаты х и у любой точки окружности ω(А;R) удовлетворяет уравнению

Обратно: любая точка В(х;у), координаты которой удовлетворяют уравнению, принадлежит окружности, т.к. расстояние от нее до точки А(a;b) равно R. Отсюда по определению данное уравнение – уравнение окружности ω(А;R).

ОКРУЖНОСТЬ, ОПИСАННАЯ ОКОЛО ТРЕУГОЛЬНИКА.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.

Пусть АВС – данный треугольник и О – центр окружности описанной около данного треугольника. ΔАОВ – равнобедренный (АО=ОВ как радиусы). Медиана ОD – этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне АС и проходящей через ее середину. Так же доказывается, что цент окружности лежит на перпендикулярах к другим сторонам треугольника. Теорема доказана.

ОКРУЖНОСТЬ, ВПИСАННАЯ В ТРЕУГОЛЬНИК.

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Пусть АВС — данный треугольник, О – центр вписанной в него окружности, D, E, F – точки касания окружности со сторонами. ΔAEO=ΔAOD по гипотенузе и катету (EO=OD – как радиус, АО – общая). Из равенства треугольников следует, что

КАК НАЙТИ КООРДИНАТЫ ЦЕНТРА ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА, ЗНАЯ КООРДИНАТЫ ЕГО ВЕРШИН. ПОСТРОЕНИЕ ЭТОЙ ОКРУЖНОСТИ.

Теперь выясним, как найти координаты центра окружности, описанной около треугольника, зная координаты его вершин. Чтобы найти центр этой окружности, нужно найти точку пересечения серединных перпендикуляров, проведенных к сторонам этого треугольника.

Для начала найдем середину каждой стороны треугольника.

у В(а 1 ;в 1 ) Е С(а 2 ;в 2 )

D F

А(a;в)

О х

Рассмотрим сторону АВ. Зная координаты двух точек А и В, можно составить уравнение прямой АВ по виду: у=kx+L. Подставляя вместо х и у координаты точек А и В, получим систему:

Выражая k из первого уравнения и подставляя во второе, найдем значение L 1 . Подставляя значение L 1 в одно из уравнений, найдем значение k 1 . Зная k 1 и L 1 , получим уравнение прямой АВ: у=k 1 x+L 1.

Рассмотрим отдельно прямую АВ. Серединный перпендикуляр включает в себя сразу два понятия: медиану и высоту. Точки на сторонах треугольника для прохождения медиан найдены. Теперь через одну из этих точек проведем высоту.

Угол пересечения прямой АВ с осью Ох обозначим α (альфа). Тогда острый угол, образованный прямой DY и осью Ох будет равен: 180 0 -(90 0 +α)=90 0 -α. А угол, смежный с ним: 180 0 -(90 0 -α)=90 0 +α.

В уравнении прямой АВ у=k 1 x+L 1 k 1 — угловой коэффициент, он равен tgα.

Если k 1 =tgα, то k 2 в уравнении у=k 2 x+L 2 для прямой DY равно tg(90 0 +α)=-сtgα.

х

В(а 1 ;в 1 )

D

А(a;в)

О 0 — 0 + 1 * k 2 =tgα*(-сtgα)=-1, т.е. k 1 * k 2 =-1, отсюда k 2 =-1: k 1 .

Мы знаем уравнение прямой АВ: у=k 1 x+L 1 и знаем, как k 1 связан с k 2 . Тогда уравнение прямой DY примет вид : у=-1:k 1* x+L 2 ; зная координаты точки D, принадлежащей этой прямой, и подставляя их в это уравнение, найдем L 2.

Аналогично пишем уравнения другим серединным перпендикулярам треугольника и ( с помощью систем уравнений) находим точку их пересечения – это и есть центр описанной окружности.

Чтобы найти радиус, надо соединить центр окружности с одной из вершин треугольника и найти длину этого отрезка.

Читайте также:  Диета для сжигания висцерального жира

Теперь, зная центр и радиус описанной около треугольника окружности, можно ее построить.

Доказательство тождества tg(90 0 +α)=-сtgα.

Возьмем окружность радиусом 1 и центром в точке начала координат. Из начала координат проведем вектор Р, образующий с осью Ох угол α, а затем повернем этот вектор на 90 0 и проведем прямые, параллельные оси Оу и проходящие через точки А и В.

Пусть точка А(х а ;у а ), а точка В(х 90+α ; у 90+α ).

Рассмотрим ΔОАД. Он прямоугольный и следует, sinα=AD:OA=y a :1=y a . A cosα=OD:OA=x 1 :1=x 1 . Значит координаты точки А можно записать так A (cosα; sinα).

Аналогично точке А, координаты точки В можно записать: В(cos(90 0 +α); sin(90 0 +α)).

Треугольники ОВЕ и АОД равны по одной стороне и двум , прилежащим к ней углам. Из этого следует равенство:

ВЕ=ОД, sin(90 0 +α)=cosα и ОЕ=АД, cos (90 0 +α)=-sinα (т.к. ОЕ принимает отрицательное значение)

Из нашей исследовательской работы следует, что произведение коэффициентов перпендикулярных прямых равно -1. Этот результат работы можно использовать при решении других задач на координатной плоскости. Например, при нахождении точки пересечения высот треугольника. Попутно мы пришли к выводу, что tg(90+α)=-ctgα. Это тождество поможет успешно изучать тригонометрию. Мы предлагаем расширить круг задач в школьном курсе геометрии по теме «Координатная плоскость»

Список использованной литературы.

Энциклопедический словарь юного математика. Савин А.П. Москва. «Педагогика», 1989г.

Большой справочник математика для школьников и поступающих в вузы. Д.И. Аверьянов. «Дрофа», 1998г.

Энциклопедический словарь юного математика. Савин А.П. Москва. «Педагогика», 1985г.

источник

Как составить уравнение описанной около треугольника окружности по координатам его вершин? Как найти координаты центра описанной окружности? Как найти радиус описанной окружности, зная координаты вершин треугольника?

Решение всех этих задач сводится к одной — написать уравнение окружности, проходящей через три данные точки. Для этого достаточно подставить координаты точек (вершин треугольника) в уравнение окружности. Получим систему из трёх уравнений с тремя неизвестными: координатами центра и радиусом окружности.

Составить уравнение описанной окружности для треугольника с вершинами в точках A(2;1), B(6;3), C(9;2).

Подставив координаты вершин треугольника в уравнение окружности

получим систему уравнений

Вычтем из первого уравнения системы второе:

Теперь из второго уравнения системы вычтем третье:

Приравняем правые части равенств b=-2a+10 и b=3a-20:

Подставим в первое уравнение системы a=6 и b=-2:

a и b — координаты центра окружности, R — её радиус. Таким образом, точка (6;-2) — центр описанной около треугольника ABC окружности, радиус R=5, а уравнение описанной окружности

Для решения аналогичной задачи для четырёхугольника либо многоугольника достаточно знать координаты трёх его вершин.

источник

Как найти координаты центра окружности, описанной около треугольника, знаякоординаты его вершин. Построение этой окружности

Название Как найти координаты центра окружности, описанной около треугольника, знаякоординаты его вершин. Построение этой окружности
Дата публикации 04.05.2015
Размер 105.3 Kb.
Тип Документы

100-bal.ru > Астрономия > Документы

ТЕМА: КАК НАЙТИ КООРДИНАТЫ ЦЕНТРА ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА, ЗНАЯКООРДИНАТЫ ЕГО ВЕРШИН. ПОСТРОЕНИЕ ЭТОЙ ОКРУЖНОСТИ.

Работу выполнила ученица 9 класса

МОУ «Лицей №1 пос. Львовский»

Введение.

  1. История появления координатной плоскости.
  2. Координатная плоскость.
  3. Координаты середины отрезка.
  4. Расстояние между точками.
  5. Уравнение прямой.
  6. Уравнение окружности.
  7. Окружность, описанная около треугольника.
  8. Окружность вписанная в треугольник.
  9. Доказательство тождества tg(90+a)=-ctga.
  10. Как найти координаты центра окружности, описанной около треугольника, зная координаты его вершин. Построение этой окружности.

Заключение.

Список используемой литературы.

Данная работа носит исследовательский характер.

Выведенные формулы с доказательством позволяют решать новые, еще не встречавшиеся задачи. Школьная программа не включает в себя решение наиболее сложных задач, связанных с координатной плоскостью, и мы предлагаем расширить круг знаний в этой области. Задачи, связанные с этими формулами, можно использовать как олимпиадные задачи, а также они будут интересны учащимся, изучающим курс математики, выходящий за рамки школьного курса.

Здесь предложена одна из задач на выбранную нами тему. Она связана с описанной окружностью, но можно составить задачи и на вписанную окружность, и на нахождение точки пересечения медиан, высот, биссектрис на координатной плоскости.

Данная работа направлена на расширение круга знаний ученика.

История появления координатной плоскости.

Более чем 100 лет до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами и ввести хорошо теперь известные географические координаты: широту и долготу – и обозначить их числами.

В 14 веке французский математик Н. Оресм ввел, по аналогии с географическими, координаты на плоскости. Он предложил покрыть плоскость прямоугольной сеткой и назвать широтой и долготой то, что мы теперь называем абсциссой и ординатой.

Это нововведение оказалось чрезвычайно продуктивным. На его основе возник метод координат, связавший геометрию с алгеброй. Основная заслуга в создании метода координат принадлежит французскому математику Р. Декарту. Такую систему координат стали называть декартовой. Точку О пересечения прямых называют началом координат, а сами направленные прямые – осями, ось Ох – осью абсцисс, а ось Оу – осью ординат. Числа х, у называют декартовыми координатами точки (х; у). точка плоскости – геометрический объект – заменяется парой чисел (х;у), т.е. алгебраическим объектом. Принадлежность точки заданной кривой теперь соответствует тому, что числа х и у удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (а;в) удовлетворяют уравнению (х-а) 2 +(у-в) 2 =R 2 .

Координатная плоскость состоит из двух перпендикулярных прямых X и Y, которые пересекаются в начале отсчета – точке О и на них обозначен единичный отрезок (смотри рис.). эти прямые называют системой координат на плоскости, а точку О – началом координат. Плоскость, на которой выбрана система координат, называют координатной плоскостью.

Пусть А – некоторая точка плоскости. Проведем через нее прямую MА, перпендикулярно координатной прямой Х, и прямую LA, перпендикулярную координатной прямой Y. Т.к. точка М имеет координату 5, а точка L координату 4, то положение точки А определяется парой чисел (5;4). Эту пару чисел называют координатами точки А. Число 5 называют абсциссой точки А, а число 4 называют ординатой точки А. Координатную прямую Х называют осью абсцисс, а координатную прямую Y — осью ординат. Точку А с абсциссой 5 и ординатой 4 обозначают так: А (5;4). При этом всегда на первом месте пишут абсциссу точки, а на втором месте её ординату. Если переставить местами координаты, то получится другая точка N (4;5), которая показана на рисунке.

Каждой точке А на координатной плоскости соответствует пара чисел: ее абсцисса и ордината. Наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

КООРДИНАТЫ СЕРЕДИНЫ ОТРЕЗКА.

; .

Пусть АВ не параллелен оси Оу, т.е. х1≠х2.проведем через точки А,В,С прямые, параллельные оси Оу. Они пересекут ось Ох в точках А(х1;0), В(х2;0), С(х;0). По теореме Фалеса точка Сх – середина отрезка [Ах Вх], то есть Ах Сх= Сх Вх или отсюда либо х-х1=х-х2, либо х-х1=-(х-х2). Первое равенство невозможно, т.к. х1≠х2, а второе дает . Если х12, то х=х12 и равенство остается верным. Ордината точки С находится аналогичными построениями и рассуждениями.

.

Следовательно, теорема доказана.

Если А111) и А222) две произвольные точки плоскости Оху, а d –расстояние между ними, то d вычисляется из соотношения .

Утверждение теоремы следует из определения проекции отрезка и теоремы Пифагора.

Уравнение вида называется общим уравнением прямой.

Угол α, определяемый, как показано на рисунке, называется углом наклона прямой к оси Ох. Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой; его обычно обозначают буквой k: k=tgα

Уравнение y=kx+b называется уравнением прямой с угловым коэффициентом; k – угловой коэффициент, b – величина отрезка, который отсекает прямая на оси Оу, считая от начала координат.

Уравнение вида ax+by+c=0 при условии, что a и b одновременно не равны нулю, задает прямую в плоскости Оху, и наоборот, уравнение произвольной прямой может быть записано в указанном виде.

Пусть b≠0. Тогда уравнение прямой можно переписать в виде y=kx+b.

Число k называется угловым коэффициентом прямой и равно тангенсу угла между положительной полуосью абсцисс и лучом прямой, лежащей в одной с положительной полуосью ординат полуплоскости относительно оси абсцисс.

Уравнение окружности ω(А;R) имеет вид

, где а и b- координаты центра А окружности ω(А;R).

Пусть дана окружность ω(А;R) на плоскости Оху, где А, центр окружности – имеет координаты а и b, по определению окружности для любой точки В(х;у), лежащей на окружности ω(А;R), верно АВ=R. Но в соответствии с теоремой: Если А111) и А222) две произвольные точки плоскости Оху, а d –расстояние между ними, то d вычисляется из соотношения .

АВ 2 . Таким образом, координаты х и у любой точки окружности ω(А;R) удовлетворяет уравнению

.

Обратно: любая точка В(х;у), координаты которой удовлетворяют уравнению, принадлежит окружности, т.к. расстояние от нее до точки А(a;b) равно R. Отсюда по определению данное уравнение – уравнение окружности ω(А;R).

ОКРУЖНОСТЬ, ОПИСАННАЯ ОКОЛО ТРЕУГОЛЬНИКА.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.

Пусть АВС – данный треугольник и О – центр окружности описанной около данного треугольника. ΔАОВ – равнобедренный (АО=ОВ как радиусы). Медиана ОD – этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне АС и проходящей через ее середину. Так же доказывается, что цент окружности лежит на перпендикулярах к другим сторонам треугольника. Теорема доказана.

ОКРУЖНОСТЬ, ВПИСАННАЯ В ТРЕУГОЛЬНИК.

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Пусть АВС — данный треугольник, О – центр вписанной в него окружности, D, E, F – точки касания окружности со сторонами. ΔAEO=ΔAOD по гипотенузе и катету (EO=OD – как радиус, АО – общая). Из равенства треугольников следует, что
КАК НАЙТИ КООРДИНАТЫ ЦЕНТРА ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА, ЗНАЯ КООРДИНАТЫ ЕГО ВЕРШИН. ПОСТРОЕНИЕ ЭТОЙ ОКРУЖНОСТИ.

Теперь выясним, как найти координаты центра окружности, описанной около треугольника, зная координаты его вершин. Чтобы найти центр этой окружности, нужно найти точку пересечения серединных перпендикуляров, проведенных к сторонам этого треугольника.

Для начала найдем середину каждой стороны треугольника.

Рассмотрим сторону АВ. Зная координаты двух точек А и В, можно составить уравнение прямой АВ по виду: у=kx+L. Подставляя вместо х и у координаты точек А и В, получим систему:

Выражая k из первого уравнения и подставляя во второе, найдем значение L1. Подставляя значение L1 в одно из уравнений, найдем значение k1. Зная k1 и L1, получим уравнение прямой АВ: у=k1x+L1.

Рассмотрим отдельно прямую АВ. Серединный перпендикуляр включает в себя сразу два понятия: медиану и высоту. Точки на сторонах треугольника для прохождения медиан найдены. Теперь через одну из этих точек проведем высоту.

Угол пересечения прямой АВ с осью Ох обозначим α (альфа). Тогда острый угол, образованный прямой DY и осью Ох будет равен: 180 0 -(90 0 +α)=90 0 -α. А угол, смежный с ним: 180 0 -(90 0 -α)=90 0 +α.

В уравнении прямой АВ у=k1x+L1 k1 — угловой коэффициент, он равен tgα.

Если k1=tgα, то k2 в уравнении у=k2x+L2 для прямой DY равно tg(90 0 +α)=-сtgα.

Возьмем окружность радиусом 1 и центром в точке начала координат. Из начала координат проведем вектор Р, образующий с осью Ох угол α, а затем повернем этот вектор на 90 0 и проведем прямые, параллельные оси Оу и проходящие через точки А и В.

Рассмотрим ΔОАД. Он прямоугольный и следует, sinα=AD:OA=ya:1=ya. A cosα=OD:OA=x1:1=x1. Значит координаты точки А можно записать так A (cosα; sinα).

Аналогично точке А, координаты точки В можно записать: В(cos(90 0 +α); sin(90 0 +α)).

Треугольники ОВЕ и АОД равны по одной стороне и двум , прилежащим к ней углам. Из этого следует равенство:

ВЕ=ОД, sin(90 0 +α)=cosα и ОЕ=АД, cos (90 0 +α)=-sinα (т.к. ОЕ принимает отрицательное значение)

Из нашей исследовательской работы следует, что произведение коэффициентов перпендикулярных прямых равно -1. Этот результат работы можно использовать при решении других задач на координатной плоскости. Например, при нахождении точки пересечения высот треугольника. Попутно мы пришли к выводу, что tg(90+α)=-ctgα. Это тождество поможет успешно изучать тригонометрию. Мы предлагаем расширить круг задач в школьном курсе геометрии по теме «Координатная плоскость»

источник