Меню

Как дробь с целым числом перевести в правильную дробь

неправильная дробь – дробь, у которой числитель больше знаменателя. правильная – та дробь, у которой, соответственно, числитель меньше знаменателя. неправильную дробь превратить в правильную никак нельзя, но зато ее можно представить в виде смешанного числа, состоящего из двух частей (одна часть будет целым числом, а другая – как раз правильной дробью).

например 5/2=2+1/2 (только пишут дробь обычно сразу после целого числа без знака “плюс”)

здесь нужно числитель неправильной дроби разделить на знаменатель. записываем целую часть от деления (в нашем случае 2). затем остаток от деления (то есть 1) записываем как числитель дроби, которую мы записываем рядом с двойкой.

Для того чтобы преобразовать неправильную дробь в правильную для начала необходимо сказать:

-У неправильной дроби числитель (верхнее число в дроби) больше знаменателя ил равна ему;

-У правильной дроби все наоборот.

Процесс преобразования разберем на примере дроби 260/7:

1) Сначала делим 260 на 7, получаем число 37,14..

2) Число 37 будет стоять впереди дроби как целое число

4) От числителя отнимаем получившееся число 260 – 259 = 1 – это число и будет в числители нашей правильной дроби.

5) При записи новой дроби знаменатель остается неизменной. В данном случае это 7. Правильная дробь будет выглядит следующим образом:

Проверка преобразованной дроби:

Целое число умножаем на знаменатель и прибавляем числитель 37 * 7 + 1 = 260.

Неправильной дробью называют такую дробь, у которой числитель больше знаменателя. Значит правильная дробь та, у которой числитель меньше знаменателя. Чтобы превратить неправильную дробь в правильную можно представить в виде десятичного числа. Например 17/8 можно записать так: 2,125. Или записать так: 2 1/8.

Чтобы решить поставленную задачу, сначала нужно четко уяснить для себя, что такое правильная дробь, а что такое неправильная.

Начнем с того, что утверждение

верно далеко не для всех чисел на числовой оси.

числитель равен (-10), знаменатель равен (-4)

числитель равен 2, знаменатель равен (-3)

Неправильную дробь можно записать с помощью суммы целого числа и правильной дроби (смешанной дроби) и для этого нужно:

разделить числитель на знаменатель, полученное целое число записать в целой части, остаток в числителе, знаменатель оставить без изменений

в числителе (-15), в знаменателе 2, минус вынесем за пределы дроби – (15/2), 15 разделим на 2, целое число 7 ставим в целую часть дроби, остаток от деления 1 запишем в числителе, а знаменатель 2 оставим без изменений.

Правильной дробью называется такая дробь, у которой знаменатель больше числителя. Это говорит о том, что эта дробь показывает какую-то часть целого. Например дробь 1/2 говорит о том что у нас есть половина например арбуза, а дробь 7/9 – что у нас осталось семь кусочков арбуза разрезанного на 9 частей. Две части кто-то съел.

Если же дробь неправильная, то есть числитель больше знаменателя, то совершенно непонятно, какая у нас часть целого, но разрезанного арбуза и сколько еще целых арбузов в наличии. Поэтому приходится перевести неправильную дробь в правильную. при этом мы получим какое-то целое число и остаток – именно правильную дробь.

Для перевода делим числитель на знаменатель в столбик. Пример: 7/4. Семь на четыре дает единицу и остаток 3/4. Вот мы и перевели дробь в правильную – ответ 1 и 3/4.

источник

Второй способ перевести обыкновенную дробь в десятичную – умножить числитель и знаменатель на такое целое число, чтобы в знаменателе получилось 10 в какой-либо степени (10, 100, 1000 и т.д.). Это не всегда возможно, так для дроби 2/3 такого целого числа не существует, а вот для дроби 7/125 существует такой множитель. Это 8.

125 * 8 = 1000, тогда 7/125 = 7*8/1000 = 56/1000 = 0.056.

Не каждая обыкновенная дробь может быть представлена в виде конечной десятичной дроби, обычно получаются бесконечные дроби. Это легко увидеть в сокращенной дроби. Достаточно проанализировать ее знаменатель. Если в нем содержится простое число, не равное ни 2, ни 5, то при переводе вы получите бесконечную десятичную дробь.

Помимо бесконечных десятичных дробей математики различают еще периодичные десятичные дроби, они также бесконечны, но в такой дроби с некоторой цифры последовательность цифр начинает повторяться. Такова, например, дробь 2/3 = 0.(66), здесь цифры 66 повторяются до бесконечности.

  • Обыкновенные и десятичные дроби
  • как обычно перевод
  • Как перевести смешанное число 1 целая 21/30 в десятичную

Сократите дробную часть получившегося числа. Для этого числитель и знаменатель дроби нужно разделить на один и тот же делитель. В данном случае это число “5”. Итак, “5/10” преобразуется в “1/2”.

В результате первоначальная дробь будет выглядеть так – “2 1/2”.

Чтобы придать числу законченный вид, можно представить его целую часть также в виде простой дроби со знаменателем “2”. Итак, “2” – это “4/2” (разделите числитель и знаменатель друг на друга, и вы получите “2”). Теперь к “4/2” прибавьте “1/2”, и получится “5/2”.

Таким образом, первоначальная десятичная дробь “2,5” превратилась в обыкновенную дробь “5/2”.

Переведите любую другую десятичную дробь в обыкновенную дробь по аналогии.

Десятичную дробь отличает знаменатель, кратный десяти. Такая запись подобна разрядам целых чисел, идущая по возрастанию справа налево. Поэтому для перевода обыкновенной дроби нужно вычислить такой общий коэффициент для ее делимого и делителя, чтобы последний содержал только десятичные, сотые, тысячные и т.п. доли.

Пример: переведите дробь ¼ в десятичный вид.

Дробь представляет собой число, которое состоит из одной или нескольких долей единицы. В математике существует три вида дробей: обыкновенные, смешанные и десятичные.

Обыкновенная дробь записывается как соотношение, в котором в числителе отражается, сколько взято частей от числа, а знаменатель показывает, на сколько частей разделена единица. Если в дроби числитель меньше знаменателя, то перед нами правильная дробь.Например: ½, 3/5, 8/9.

Если числитель равен знаменателю или больше его, то мы имеем дело с неправильной дробью. Например: 5/5, 9/4, 5/2 При делении числителя на знаменатель может получиться конечное число. Например, 40/8 = 5. Следовательно, любое целое число может быть записано в виде обыкновенной неправильной дроби или ряда таких дробей. Рассмотрим пример записи одного и того же числа в виде ряда различных неправильных дробей.

В общем виде смешанная дробь может быть представлена формулой:

Таким образом, смешанная дробь записывается как целое число и обыкновенная правильная дробь, а под такой записью понимают сумму целого и его дробной части.

Десятичная дробь – это особая разновидность дроби, у которой знаменатель может быть представлен как степень числа 10. Существуют бесконечные и конечные десятичные дроби. При записи этой разновидности дроби сначала указывается целая часть, затем через разделитель (точку или запятую) фиксируется дробная часть.

Запись дробной части всегда определяется ее размерностью. Десятичная запись выглядит следующим образом:

Смешанную дробь можно перевести только в неправильную. Для перевода необходимо целую часть привести и тому же знаменателю, что и дробную. В общем виде это будет выглядеть следующим образом:Рассмотрим использование этого правила на конкретных примерах:

  • Перевод обыкновенной дроби в смешанную

Неправильную обыкновенную дробь можно превратить в смешанную путем простого деления, в результате которого находится целая часть и остаток (дробная часть).

Для примера переведем дробь 439/31 в смешанную:​​

В некоторых случаях перевести дробь в десятичную достаточно просто. В этом случае применяется основное свойство дроби, числитель и знаменатель умножаются на одно и то же числу, для того, чтобы привести делитель к степени числа 10.

В некоторых случаях может понадобиться найти частное путем деления уголком или с помощью калькулятора. А некоторые дроби невозможно привести к конечной десятичной дроби. Например, дробь 1/3 при делении никогда не даст конечный результат.

источник

В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.

Если мы возьмем сумму n + a b , где значением n может быть любое натуральное число, а a b представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: n a b . Возьмем конкретные числа для ясности: так, 28 + 5 7 – это то же самое, что и 28 5 7 . Запись дроби рядом с целым числом принято называть смешанным числом.

Читайте также:  Как приготовить землю под чеснок на зиму

Смешанное число представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью a b . В таком случае n является целой частью числа, а a b – его дробной частью.

Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство n a b = n + a b .

Его также можно записать в виде n + a b = n a b .

Какие можно привести примеры смешанных чисел? Так, к ним относится 5 1 8 , при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 1 1 2 , 234 34 53 , 34000 6 25 .

Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5 22 3 , 75 7 2 . Они не являются смешанными числами, т.к. их дробная часть неправильная. Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.

Числа вида 0 3 14 также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.

Эту связь проще всего проследить на конкретном примере.

Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1 + 3 4 торта. Эту сумму можно представить в виде смешанного числа как 1 3 4 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 7 4 торта. Очевидно, что от разрезания количество не увеличилось, и 1 3 4 = 7 4 .

Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.

Вернемся к нашим 7 4 торта, оставшимся на столе. Сложим из его кусочков один торт обратно ( 1 + 3 4 ) . У нас опять будет 1 3 4 .

Ответ: 7 4 = 1 3 4 .

Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.

Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.

Для этого нужно воспроизвести следующую последовательность действий:

1. Для начала представляем имеющееся смешанное число n a b как сумму целой и дробной части. Получается n + a b

2. Далее заменяем целую часть на дробь со знаменателем, равным единице (то есть записываем n как n 1 ).

3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n 1 и a b . Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.

Разберем это действие на конкретном примере.

Представьте 5 3 7 в виде неправильной дроби.

Выполняем последовательно шаги указанного выше алгоритма. Наше число 5 3 7 – это сумма целой и дробной части, то есть 5 + 3 7 . Теперь пятерку запишем в виде 5 1 . У нас получилась сумма 5 1 + 3 7 .

Последний шаг – сложение дробей, имеющих разные знаменатели:

5 1 + 3 7 = 35 7 + 3 7 = 38 7

Все решение к краткой форме можно записать как 5 3 7 = 5 + 3 7 = 5 1 + 3 7 = 35 7 + 3 7 = 38 7 .

Ответ: 5 3 7 = 38 7 .

Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число n a b в неправильную дробь. У нас получилась формула n a b = n · b + a b , которую мы и будем брать для решения дальнейших задач.

Представьте 15 2 5 в виде неправильной дроби.

Возьмем указанную формулу и подставим в нее нужные значения. У нас n = 15 , a = 2 , b = 5 , следовательно, 15 2 5 = 15 · 5 + 2 5 = 77 5 .

Ответ: 15 2 5 = 77 5 .

Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.

Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.

Разберем, как именно это делается.

Любая неправильная дробь a b –это смешанное число q r b . Здесь q представляет собой неполное частное, а r – это остаток от a b . Таким образом, целая часть смешанного числа есть неполное частное от деления a b , а дробная – это остаток.

Приведем доказательство этого утверждения.

Нам требуется пояснить, почему q r b = a b . Для этого смешанное число q r b надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b , то должно выполняться равенство a = b · q + r .

Таким образом, q · b + r b = a b поэтому q r b = a b . Это и есть доказательство нашего утверждения. Подытожим:

Выделение целой части из неправильной дроби a b осуществляется таким образом:

1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.

2) Записываем результаты в виде q r b . Это и есть наше смешанное число, равное исходной неправильной дроби.

Представьте 107 4 в виде смешанного числа.

Деление числителя a = 118 на знаменатель b = 7 дает нам в итоге неполное частное q = 16 и остаток r = 6 .

В итоге мы получаем, что неправильная дробь 118 7 равна смешанному числу q r b = 16 6 7 .

Ответ: 118 7 = 16 6 7 .

Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).

Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: a b = a : b = c . Получается, что неправильную дробь a b можно заменить натуральным числом c .

Например, если в ответе получилась неправильная дробь 27 3 , то можем записать вместо нее 9 , поскольку 27 3 = 27 : 3 = 9 .

источник

В предыдущих уроках было сказано, что дробь, состоящая из целой и дробной части, называется смешанной.

Все дроби, имеющие целую и дробную часть, носят одно общее название — смешанные числа.

Смешанные числа так же, как и обыкновенные дроби можно складывать, вычитать, умножать и делить. В данном уроке мы рассмотрим каждую из этих операций по отдельности.

Встречаются задачи, в которых требуется сложить целое число и правильную дробь. Например, сложить число 2 и дробь . Чтобы решить этот пример, нужно число 2 представить в виде дроби . Затем сложить дроби с разными знаменателями:

А теперь внимательно посмотрим на этот пример. Смотрим на его начало и на его конец. Начало у него выглядит так: , а конец так: . Различие в том, что в первом случае число 2 и дробь соединяются знаком сложения, а во втором случае они записаны вместе. На самом деле это одно и то же. Дело в том, что это свёрнутая форма записи смешанного числа, а — развёрнутая.

Когда перед нами смешанное число вида , мы должны понимать, что знак сложения опущен.

Какой можно сделать вывод? Если потребуется сложить целое число и правильную дробь, можно опустить плюс и записать целое число и дробь вместе.

Значит значение выражения равно

Если к двум целым пиццам прибавить половину пиццы, то получится две целые пиццы и ещё половина пиццы:

Пример 2. Найти значение выражения

Представим число 3 в виде дроби . Затем сложим дроби с разными знаменателями:

Это первый способ. Второй способ намного проще. Можно поставить знак равенства и записать целую и дробную часть вместе. То есть, опустить знак сложения:

Пример 3. Найти значение выражения

Можно записать вместе число 2 и дробь , но этот ответ не будет окончательным, поскольку в дроби можно выделить целую часть.

Поэтому в данном примере сначала нужно выделить целую часть в дроби . Пять вторых это две целых и одна вторая:

Теперь в главном выражении вместо дроби запишем смешанное число

Получили новое выражение . В этом выражении смешанное число запишем в развёрнутом виде:

Применим сочетательный закон сложения. Сложим две двойки, получим 4:

Теперь свернём полученное смешанное число:

Это окончательный ответ. Подробное решение этого примера можно записать следующим образом:

Встречаются задачи, в которых требуется сложить смешанные числа. Например, найти значение выражения . Чтобы решить этот пример, нужно целые и дробные части сложить по отдельности.

Для начала запишем смешанные числа в развёрнутом виде:

Применим сочетательный закон сложения. Сгруппируем целые и дробные части по отдельности:

Вычислим целые части: 2 + 3 = 5. В главном выражении заменяем выражение в скобках (2 + 3) на полученную пятёрку:

Теперь вычислим дробные части. Это сложение дробей с разными знаменателями. Как складывать такие дроби мы уже знаем:

Читайте также:  Куда лучше поехать с маленьким ребенком на море

Получили . Теперь в главном выражении заменяем дробные части на полученную дробь

Теперь свернем полученное смешанное число:

Таким образом, значение выражения равно . Попробуем изобразить это решение в виде рисунка. Если к двум целым и половине пиццы прибавить три целые и одну восьмую пиццы, то получится пять целых пицц и ещё пять восьмых пиццы:

Подобные примеры нужно решать быстро, не останавливаясь на подробностях. Находясь в школе, нам пришлось бы записать решение этого примера следующим образом:

Если в будущем увидите такое короткое решение, не пугайтесь. Вы уже понимаете, что откуда взялось.

Пример 2. Найти значение выражения

Запишем смешанные числа в развёрнутом виде:

Сгруппируем целые и дробные части по отдельности:

Вычислим целые части: 5 + 3 = 8 . В главном выражении заменяем выражение в скобках (5 + 3) на полученное число 8

Теперь вычислим дробные части:

Получили смешанное число . Теперь в главном выражении заменяем выражение в скобках на полученное смешанное число

Получили выражение . В данном случае число 8 надо прибавить к целой части смешанного числа . Для этого смешанное число можно временно развернуть, чтобы было понятнее, что с чем складывать:

Сложим целые части. Получаем 9

Сворачиваем готовый ответ:

Таким образом, значение выражения равно .

Полное решение этого примера выглядит следующим образом:

Для решения подобных примеров существует универсальное правило. Выглядит оно следующим образом:

Чтобы сложить смешанные числа, надо:

  • привести дробные части этих чисел к общему знаменателю;
  • отдельно выполнить сложение целых и дробных частей.

Если при сложении дробных частей получилась неправильная дробь, выделить целую часть в этой дроби и прибавить ее к полученной целой части.

Применение готовых правил допустимо в том случае, если суть темы полностью понятна. Решение по-шаблону, поглядывая в другие подобные примеры, приводит к ошибкам на обнаружение которых уходит дополнительное время. Поэтому, сначала разумнее понять тему, а затем пользоваться готовым правилом.

Пример 3. Найти значение выражения

Воспользуемся готовым правилом. Приведём дробные части к общему знаменателю, затем по отдельности сложим целые и дробные части:

Встречаются задачи, в которых нужно сложить целое и смешанное число. Например, сложить 2 и смешанное число . В этом случае целые части складываются отдельно, а дробная часть остаётся без изменения:

Здесь смешанная дробь была развёрнута в ходе решения, затем целые части были сгруппированы и сложены. В конце целая и дробная части были свёрнуты. В результате получили ответ .

Попробуем изобразить это решение в виде рисунка. Если к двум целым пиццам прибавить три целые и треть пиццы, то получятся пять целых и треть пиццы:

Пример 2. Найти значение выражения

В этом примере, как и в предыдущем, нужно сложить целые части:

Осталось свернуть целую и дробную части, но дело в том, что дробная часть представляет собой неправильную дробь. Сначала нужно выделить целую часть в этой неправильной дроби. Затем целую часть этой дроби прибавить к 4, а дробную часть оставить без изменения. Продолжим данный пример на новой строке:

Встречаются задачи, в которых требуется вычесть дробь из целого числа. Например, вычесть из числа 1 дробь . Чтобы решить такой пример, нужно целое число 1 представить в виде дроби , и выполнить вычитание дробей с разными знаменателями:

Если имеется одна целая пицца и мы вычтем из неё половину пиццы, то у нас получится половина пиццы:

Пример 2. Найти значение выражения .

Представим число 2 в виде дроби , и выполним вычитание дробей с разными знаменателями:

Если имеются две целые пиццы и мы вычтем из низ половину, то останется одна целая и половина пиццы:

Такие примеры можно решать в уме. Достаточно суметь воспроизвести их в своём воображении. К примеру, найдём значение выражения , не приводя на бумаге никаких вычислений.

Представим, что число 3 это три пиццы:

Нужно вычесть из них . Мы помним, что треть выглядит следующим образом:

Теперь представим, во что превратятся три пиццы, если отрезать от них эту треть

Получилось (две целых и две трети пиццы).

Чтобы убедиться в правильности решения, можно найти значение выражения обычным методом, представив число 3 в виде дроби, и выполнив вычитание дробей с разными знаменателями:

Пример 3. Найти значение выражения

Представим число 3 в виде дроби . Затем выполним вычитание дробей с разными знаменателями:

Теперь мы готовы к тому, чтобы вычесть смешанное число из целого числа. Найдём значение выражения .

Чтобы решить этот пример, число 5 нужно представить в виде дроби, а смешанное число перевести в неправильную дробь. После перевода смешанного числа в неправильную дробь, получим дробь . Теперь выполним вычитание дробей с разными знаменателями:

Если из пяти целых пицц вычесть одну целую и половину пиццы, то останутся три целые пиццы и половина пиццы:

Пример 2. Найти значение выражения

Представим 6 в виде дроби , а смешанное число , в виде неправильной дроби. После перевода смешанного числа в неправильную дробь, получим дробь . Теперь выполним вычитание дробей с разными знаменателями:

Примеры на вычитание дроби из числа или вычитание смешанной дроби из числа опять же можно выполнять в уме. Этот процесс легко поддаётся воображению.

К примеру, если нужно быстро найти значение выражения , то вовсе необязательно представлять число 2 в виде дроби и выполнять вычитание дробей с разными знаменателями. Число 2 можно вообразить, как две целые пиццы и далее представить, как от одной из них отрезали две третьих (два куска из трёх)

Тогда от той пиццы, от которой отрезали останется пиццы. Плюс одна из пицц останется нетронутой. Получится одна целая пицца и треть пиццы:

Если на рисунке вы закроете рукой две третьих пиццы (она закрашена), то сразу всё поймёте.

Встречаются задачи, в которых требуется вычесть из одного смешанного числа другое смешанное число. Например, найдём значение выражения:

Чтобы решить этот пример, нужно смешанные числа и перевести в неправильные дроби, затем выполнить вычитание дробей с разными знаменателями:

Если от трёх целых пицц вычесть две целые и треть пиццы, то останутся одна целая и одна шестая пиццы:

Пример 2. Найти значение выражения

Переводим смешанные числа и в неправильные дроби и выполняем вычитание дробей с разными знаменателями:

К вычитанию смешанных чисел мы ещё вернёмся. В вычитании дробей есть немало тонкостей, которым новичок пока не готов. Например, возможен случай, когда уменьшаемое может оказаться меньше вычитаемого. Это может вывести нас в мир отрицательных чисел, которых мы ещё не изучали.

А пока изучим умножение смешанных чисел. Благо оно не такое сложное, как сложение и вычитание.

Любое целое число можно умножить на дробь. Для этого достаточно умножить это число на числитель дроби.

Например, умножим число 5 на дробь . Чтобы решить этот пример, нужно число 5 умножить на числитель дроби

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Если имеются пять целых пицц и мы возьмём от этого количества половину, то у нас окажется две целые пиццы и половина пиццы:

Пример 2. Найти значение выражения

Умножим число 3 на числитель дроби

В ответе получилась неправильная дробь , но мы выделили её целую часть и получили 2.

Также, можно было сократить эту дробь. Получился бы тот же результат. Выглядело бы это следующим образом:

Если имеются три целые пиццы и мы возьмём от этого количества две третьих, то у нас окажется две целые пиццы:

Пример 3. Найти значение выражения

Этот пример решается так же, как и предыдущие. Целое число и числитель дроби нужно перемножить:

Пример 4. Найти значение выражения

Умножим число 3 на числитель дроби

Чтобы умножить смешанное число на дробь, нужно смешанное число перевести в неправильную дробь, затем выполнить перемножение обыкновенных дробей.

Пример 1. Найти значение выражения

Переведём смешанное число в неправильную дробь. После перевода это число превратится в дробь . Затем можно будет умножить эту дробь на

Допустим, имеются одна целая и половина пиццы:

Умножить эти куски на означает взять от них две трети. Чтобы взять от них две трети, сначала разделим их на три равные части. Разделим пополам ту пиццу, которая слева. Тогда у нас получится три равных куска:

Теперь если мы возьмем (два куска из трёх имеющихся), то получим одну целую пиццу. Для наглядности закрасим эти два куска:

Читайте также:  Как вкусно пожарить окорочка на сковороде пошаговый рецепт

Поэтому значение выражения было равно 1

Встречаются задачи, в которых требуется перемножить смешанные числа. Например, перемножить и . Чтобы решить этот пример, нужно перевести эти смешанные числа в неправильные дроби, затем выполнить умножение неправильных дробей:

Попробуем разобраться в этом примере с помощью рисунка. Допустим, имеются одна целая и половина пиццы:

Теперь разберемся со смешанным множителем . Этот множитель означает, что одну целую и половину пиццы нужно взять 2 раза и еще раза.

С множителем 2 всё понятно, он означает что одну целую и половину пиццы нужно взять два раза. Давайте возьмём два раза целую пиццу и половину:

Но ещё осталось взять от изначальной целой пиццы и половины, ведь множителем было смешанное число . Для этого вернёмся к изначальной одной целой и половине пиццы, и разделим их на равные части так, чтобы можно было взять от них ровно половину. А половину мы сможем взять, если разделим целую пиццу на четыре части, а половину на две части:

Мы разделили нашу целую пиццу и половину на равные части, и теперь можем сказать, что является половиной от этих кусков. Половиной от этих кусков является пиццы. Это можно хорошо увидеть, если мы упорядочим наши равные кусочки следующим образом:

А если смотреть на изначальную целую пиццу и половину с точки зрения такого порядка, как на этом рисунке, то половиной от них является пиццы.

Поэтому значение выражения равно

Пример 2. Найти значение выражения

Переводим смешанные числа в неправильные дроби и перемножаем эти неправильные дроби. Если в ответе получится неправильная дробь, выделим в ней целую часть:

Чтобы разделить целое число на дробь, нужно это целое число умножить на дробь, обратную делителю.

Например, разделим число 3 на дробь . Здесь число 3 — это делимое, а дробь — делитель.

Чтобы решить этот пример, нужно число 3 умножить на дробь, обратную дроби . А обратная дробь для дроби это дробь . Поэтому умножаем число 3 на дробь

Допустим, имеются три целые пиццы:

Если мы зададим вопрос «cколько раз (половина пиццы) содержится в трёх пиццах», то ответом будет «шесть раз» .

Действительно, если мы разделим каждую пиццу пополам, то у нас получится шесть половинок:

Поэтому значение выражения равно 6.

Пример 2. Найти значение выражения

Чтобы решить этот пример, нужно число 2 умножить на дробь, обратную дроби . А обратная дробь для дроби это дробь

Допустим, имеются две целые пиццы:

Зададим вопрос «Сколько раз пиццы содержится в этих двух пиццах?» Чтобы ответить на этот вопрос, выделим целую часть в дроби . После выделения целой части в этой дроби получим

Теперь поставим вопрос так: «Сколько раз (одна целая и половина пиццы) содержится в двух пиццах?».

Чтобы ответить на этот вопрос, нужно найти в двух пиццах такое количество пиццы, которое изображено на следующем рисунке:

В двух пиццах одна целая и половина пиццы содержится один раз. Это можно увидеть, если вторую пиццу разделить пополам:

А оставшаяся половина это треть от , которая не вместилась. Третью она является по той причине, что в одной целой и половине пиццы целую часть пиццы можно разделить пополам. Тогда каждый кусок будет третью от этого количества:

Поэтому значение выражения равно

Пример 3. Найти значение выражения

Чтобы решить этот пример, нужно число 5 умножить на дробь, обратную дроби . А обратная дробь для дроби это дробь . Поэтому умножаем число 5 на

Дробь это 2 целых и . Проще говоря, две целые и четверть пиццы:

А выражение определяет сколько раз содержится в пяти целых пиццах. Ответом было смешанное число .

То есть, пиццы содержится в пяти целых пиццах раза.

Давайте нащупаем в пяти пиццах два раза по

Белым цветом осталось не выделено две четверти. Эти две четверти представляют собой от , которые не вместились. Двумя девятыми они являются по той причине, что в пиццы каждую целую пиццу можно разделить на четыре части. Тогда каждый кусок будет девятой частью от этого количества, а два куска соответственно двумя из девяти:

Поэтому значение выражения равно

Чтобы разделить дробь на целое число, нужно данную дробь умножить на число, обратное делителю. Таким делением мы занимались в прошлом уроке. Вспомним ещё раз.

Пример 1. Разделим дробь на число 2

Чтобы разделить дробь на 2, нужно данную дробь умножить на число, обратное числу 2. А обратное числу 2 это дробь

Пусть имеется половина пиццы:

Разделим её поровну на две части. Тогда каждая получившаяся часть будет одной четвертой пиццы:

Поэтому значение выражения равно

Пример 2. Найти значение выражения

Чтобы решить этот пример, нужно дробь умножить на число, обратное числу 2. Обратное числу 2 это дробь

Пример 3. Найти значение выражения

Умножаем первую дробь на число, обратное числу 3. Обратное числу 3 это дробь

Встречаются задачи, в которых требуется разделить целое число на смешанное число. Например, разделим 2 на .

Чтобы решить этот пример, нужно делитель перевести в неправильную дробь. Затем умножить число 2 на дробь, обратную делителю.

Переведём делитель в неправильную дробь, получим . Затем умножим 2 на дробь, обратную дроби . Обратная для дроби это дробь

Допустим, имеются две целые пиццы:

Зададим вопрос «Сколько раз (одна целая и половина пиццы) содержится в двух целых пиццах?» . Похожий пример мы решали ранее, когда учились делить целое число на дробь.

В двух пиццах одна целая и половина пиццы содержится один раз. Это можно увидеть, если вторую пиццу разделить пополам:

А оставшаяся половина это треть от , которая не вместилась. Третью она является по той причине, что в одной целой и половине пиццы целую часть пиццы можно разделить пополам. Тогда каждый кусок будет третью от этого количества:

Поэтому значение выражения равно

Пример 2. Найти значение выражения

Переводим делитель в неправильную дробь, получаем . Теперь умножаем число 5 на дробь, обратную дроби . Обратная для дроби это дробь

Сначала мы получили ответ , затем сократили эту дробь на 5, и получили , но этот ответ нас тоже не устроил, поскольку он представлял собой неправильную дробь. Мы выделили в этой неправильной дроби целую часть. В результате получили ответ

Чтобы разделить смешанное число на целое число, нужно смешанное число перевести в неправильную дробь, затем умножить эту дробь на число, обратное делителю.

Например, разделим на 2. Чтобы решить этот пример, нужно делимое перевести в неправильную дробь. Затем умножить эту дробь на число, обратное делителю 2.

Переведём смешанное число в неправильную дробь, получим .

Теперь умножаем на число, обратное числу 2. Обратное числу 2 это дробь

Допустим, имеется одна целая и половина пиццы:

Разделим это количество пиццы поровну на две части. Для этого сначала разделим на две части целую пиццу:

Затем разделим поровну на две части и половину:

Теперь если мы сгруппируем эти кусочки на две группы, то получим по пиццы в каждой группе:

Поэтому значение выражения равно

Пример 2. Найти значение выражения

Переведём делимое в неправильную дробь, получим . Теперь умножаем на число, обратное числу 4. Обратное числу 4 это дробь .

Чтобы разделить смешанные числа, нужно перевести их в неправильные дроби, затем выполнить обычное деление дробей. То есть, умножить первую дробь на дробь, обратную второй.

Пример 1. Найти значение выражения

Переведём смешанные числа в неправильные дроби. Получим следующее выражение:

Как решать дальше мы уже знаем. Первую дробь нужно умножить на дробь, обратную второй. Обратная для второй дроби это дробь .

Дорешаем данный пример до конца:

Допустим, имеются две целые и половина пиццы:

Если зададим вопрос «Сколько раз (одна целая и четверть пиццы) содержится в двух целых и половине пиццы» , то ответом будет «два раза»:

Пример 2. Найти значение выражения

Переведём смешанные числа в неправильные дроби. Получим следующее выражение:

Теперь умножаем первую дробь на дробь, обратную второй. Обратная для дроби это дробь

Сначала мы получили дробь. Эту дробь мы сократили на 9. В результате получили дробь , но такой ответ нас тоже не устроил и мы выделили в дроби целую часть. В результате получили окончательный ответ .

источник

Adblock
detector