Меню

Функция клеточной оболочки в клетке

Клетка любого организма, представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка клеток. Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку. Через клеточную стенку проходит вода, соли, многие органические вещества.

Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Плазматическая мембрана. Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. “мембрана» – кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.

В состав плазматической мембраны входят белки и липиды. Они упорядочено расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций, от которых завидят жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществ – одна из главных функций плазматической мембраны. Через плазматическую мембрану из клети выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность.

Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, – микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Фагоцитоз. Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. “фагео” – пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в “мембранной упаковке” погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.

Цитоплазма. Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазме эукариотических клеток располагаются ядро и различные органоиды. Ядро располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения – продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.

Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа – гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец – рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети – участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом – это синтез белка. Синтез белка – сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляютя. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Митохондрии. В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) – митохондрии (греч. «митос» – нить, «хондрион» – зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран – наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. «криста» – гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют «силовыми станциями» клеток» так как их основная функция – синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма. Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Пластиды. В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые – хлоропласты; красные, оранжевые и желтые – хромопласты; бесцветные – лейкопласты.

Читайте также:  Как приготовить лапшу в домашних условиях

Хлоропласт. Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт – основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.

По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами – наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры – граны. Они сложены наподобие стопки монет.

В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.

Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.

Хлоропласты, хромопласты и лейкопласты способны в клетке к взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Аппарат Гольджи. Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки – белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Лизосомы. Представляют собой небольшие округлые тельца. От цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизолом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Клеточный центр. В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца – центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Ядро. Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро. Форма и размеры ядра зависят от формы и размера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это – многоядерные клетки. Ядерный сок – полужидкое вещество, которое находится под ядерной оболочкой и представляет внутреннюю среду ядра. Ядро хранит информацию о генетическом строении клетки и контролирует процессы ее жизнедеятельности.

Химический состав клетки. Неорганические вещества.

Атомный и молекулярный состав клетки. В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке – одно из основных условий ее жизни, развития и функционирования.

Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира.

источник

Все клетки состоят из трех основных частей:

  1. клеточной оболочки (ограничивает клетку от окружающей среды);
  2. цитоплазмы (составляет внутреннее содержимое клетки);
  3. ядра (у прокариот — нуклеоид) — содержит генетический материал клетки.

Основу клеточной оболочки составляет плазматическая мембрана (наружная клеточная мембрана, плазмолемма) — биологическая мембрана, ограничивающая внутренние содержимое клетки от внешней среды.

Все биологические мембраны представляют собой двойной слой липидов, гидрофобные концы которых обращены внутрь, а гидрофильные головки — наружу.

Кроме липидов в состав мембраны входят белки: периферические, погруженные (полуинтегральные) и пронизывающие (интегральные). Периферические белки прилегают к билипидному слою с внутренней или внешней стороны, полуинтегральные — частично встроены в мембрану, интегральные — проходят через всю толщу мембраны. Белки способны перемещаться в плоскости мембраны.

Мембранные белки выполняют различные функции: транспорт различных молекул; получение и преобразование сигналов из окружающей среды; поддержание структуры мембран. Наиболее важное свойство мембран — избирательная проницаемость.

Плазматические мембраны животных клеток имеют снаружи слой гликокаликса, состоящий из гликопротеинов и гликолипидов и выполняющий сигнальную и рецепторную функции. Он играет важную роль в объединении клеток в ткани.

Плазматические мембраны растительных клеток покрыты клеточной стенкой из целлюлозы. Поры в стенке позволяют пропускать воду и небольшие молекулы, а жесткость обеспечивает клетке механическую опору и защиту.

Клеточная оболочка выполняет следующие функции:

  • определяет и поддерживает форму клетки;
  • защищает клетку от механических воздействий и проникновения повреждающих биологических агентов;
  • отграничивает внутреннее содержимое клетки;
  • регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава;
  • осуществляет узнавание многих молекулярных сигналов (например, гормонов);
  • участвует в формировании межклеточных контактов и различного рода специфических выпячиваний цитоплазмы (ресничек, жгутиков).

Между клеткой и окружающей средой постоянно происходит обмен веществ. Ионы и небольшие молекулы транспортируются через мембрану путем пассивного или активного транспорта, макромолекулы и крупные частицы — путем эндо- и экзоцитоза.

Способы переноса веществ через плазматическую мембрану

Способ переноса Направление переноса Переносимые вещества Затраты энергии Описание способа
Диффузия: через липидный слой (пассивный транспорт) По градиенту концентрации O2, CO2, мочевина, этанол Без затрат энергии (пассивный процесс) Мелкие нейтральные молекулы просачиваются между молекулами липидов. Гидрофобные вещества, как правило, диффундируют быстрее гидрофильных. Ионы и крупные молекулы не могут пересечь липидный бислой
Диффузия: через белковые поры (пассивный транспорт) Ионы (в том числе Ca 2+ , K + , Na + ), вода Трансмембранные (интегральные) белки могут иметь водные каналы, по которым ионы или полярные молекулы пересекают мембрану, минуя гидрофобные хвосты липидов
Облегченная диффузия (пассивный транспорт) Глюкоза, лактоза, аминокислоты, нуклеотиды, глицерин Белок-переносчик, находящийся в клеточной мембране, на одной стороне мембраны присоединяет молекулу или ион. Это изменяет форму молекулы переносчика, и его положение в мембране изменяется так, что молекула или ион выделяются уже с другой стороны мембраны
Активный транспорт Против градиента концентрации Na + и K + , H + , аминокислоты в кишечнике, Ca 2+ в мышцах, Na + и глюкоза в почках С затратами энергии (активный процесс) Как и облегченная диффузия, осуществляется белками-переносчиками. Но в данном случае изменение формы молекулы переносчика (ее конформация) вызывается присоединением не молекулы переносимого вещества, а фосфатной группы, отделившейся от молекулы АТФ в ходе гидролиза.
Фагоцитоз Крупные макромолекулы и твердые частицы В месте контакта с частицами мембрана впячивается, затем формируется пузырек, который отшнуровывается от плазматической мембраны и поступает в цитоплазму. Характерен для амебоидных простейших, кишечнополостных, клеток крови — лейкоцитов, клеток капилляров костного мозга, селезенки, печени, надпочечников
Пиноцитоз Капли жидкости Поглощение капель жидкости по механизму, аналогичному фагоцитозу. Характерен для амебоидных простейших и клеток крови — лейкоцитов, клеток печени, некоторых клеток почек
Читайте также:  Сроки посева горчицы как сидерата

Пассивный транспорт — перемещение веществ по градиенту концентрации; осуществляется без затрат энергии путем простой диффузии, осмоса или облегченной диффузии с помощью белков-переносчиков.

Диффузия — транспорт ионов и молекул через мембрану из области с высокой в область с низкой их концентрацией, т.е. по градиенту концентрации. Диффузия может быть простой и облегченной. Если вещества хорошо растворимы в жирах, то они проникают в клетку путем простой диффузии. Например, кислород, потребляемый клетками при дыхании, и углекислый газ в растворе быстро диффундируют через мембраны. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ.

Осмос — диффузия воды через полупроницаемую мембрану из области с меньшей концентрацией солей в область с более высокой их концентрацией. Возникающее давление на полупроницаемую мембрану называют осмотическим. Клетки содержат растворы солей и других веществ, что создает определенное осмотическое давление. Живые клетки способны регулировать его, изменяя концентрацию веществ. Например, амебы имеют сократительные вакуоли для регуляции осмоса. В организме человека осмотическое давление регулируется системой органов выделения.

Облегченная диффузия — транспорт веществ в клетку через ионные каналы, образованные в мембране белками, с помощью белков-переносчиков, также находящихся в мембране. Таким образом попадают в клетку нерастворимые в жирах и не проходящие через поры вещества. Например, путем облегченной диффузии глюкоза поступает в эритроциты.

Активный транспорт — перенос веществ белками-переносчиками против градиента концентрации с затратами энергии. Например, транспорт аминокислот, глюкозы, ионов натрия, калия, кальция и др.

Эндоцитоз — поглощение веществ (путем окружения) выростами плазматической мембраны с образованием окруженных мембраной пузырьков. Экзоцитоз — выделение веществ из клетки (путем окружения) выростами плазматической мембраны с образованием окруженных мембраной пузырьков. Поглощение и выделение твердых и крупных частиц получило названия фагоцитоз и обратный фагоцитоз, жидких или растворенных частичек — пиноцитоз и обратный пиноцитоз соответственно.

источник

Лекция 54. История создания клеточной теории. Клеточная оболочка. Цитоплазма

Создание и основные положения клеточной теории. Клеточная теория – важнейшее биологическое обобщение, согласно которому все живые организмы состоят из клеток. Изучение клеток стало возможным после изобретения микроскопа. В 1590 году Янсен изобрел микроскоп, в котором увеличение обеспечивалось соединением двух линз.

Впервые клеточное строение у растений (срез пробки) обнаружил английский ученый, физик Р.Гук, он же предложил термин “клетка” (1665 г.). Голландский ученый Антони ван Левенгук впервые описал эритроциты позвоночных, сперматозоиды, разнообразные микроструктуры растительных и животных клеток, различные одноклеточные организмы, в том числе бактерии.

В 1831 г. англичанин Р.Броун обнаружил в клетках ядро. В 1838 г. немецкий ботаник М.Шлейден пришел к выводу, что ткани растений состоят из клеток и что в любой растительной клетке есть ядро. Немецкий зоолог Т.Шванн показал, что из клеток состоят и ткани животных. В 1839 г. вышла книга Т.Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений, в которой он доказывает, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Основные положения клеточной теории Т. Шванна можно сформулировать следующим образом.

1) Клетка – элементарная структурная единица строения всех живых существ.

2) Клетки растений и животных самостоятельны, гомологичны друг другу по происхождению и структуре. М.Шдейден и Т.Шванн ошибочно считали, что главная роль в клетке принадлежит оболочке и новые клетки образуются из межклеточного бесструктурного вещества. В дальнейшем в клеточную теорию были внесены уточнения и дополнения, сделанными другими учеными.

Еще в 1827 г. академик Российской АН К.М.Бэр, открыв яйцеклетки млекопитающих, установил, что все организмы начинают свое развитие с одной клетки, представляющей собой оплодотворенное яйцо. Это открытие показало, что клетка является не только единицей строения, но и единицей развития всех живых организмов.

В 1855 г. немецкий врач Р.Вирхов приходит к выводу, что клетка может возникнуть только из предшествующей клетки.

На современном уровне развития биологии основные положения клеточной теории можно представить следующим образом.

1. Клетка – элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов.

2. Клетки всех живых организмов сходны (гомологичны) по строению и химическому составу.

3. Новые клетки возникают только путем деления ранее существовавших клеток.

4. Клетка может быть самостоятельным организмом, осуществляющим всю полноту процессов жизнедеятельности (прокариоты и одноклеточные эукариоты). Все многоклеточные организмы состоят из клеток. Рост и развитие многоклеточного организма – следствие роста и размножения одной или нескольких исходных клеток Многоклеточные организмы представляют собой ассоциации специализированных клеток, объединенных в целостные системы, которые регулируются нервными и гуморальными механизмами.

  1. Клеточная организация возникла на заре жизни и прошла длительный путь эволюционного развития от безъядерных форм (прокариот) к ядерным (эукариотам).

6. Клеточное строение организмов – доказательство единства происхождения всего живого.

Изучения клеток осуществляется с помощью различных методов: –световой и электронной микроскопии, дифференциального ультрацентрифугирования, рентгеноструктурного анализа, хроматографии, электрофореза, микрохирургии, метода культуры клеток, метода радиоактивных изотопов и др.

Строение и функции клеточной оболочки

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию. Размеры клеток достаточно широко варьируют, у человека, например, от нескольких микрометров (малые лимфоциты – 7 мкм) до 100 мкм (яйцеклетка). В среднем диаметр животных клеток равен приблизительно 20 а растительных – 40 мкм. Состоит эукариотическая клетка из трех основных частей – клеточной оболочки, цитоплазмы и ядра.

Клеточная оболочка состоит из двух слоев – плазмалеммы и наружного слоя. Плазмалемма прилегает к цитоплазме и ограничивает содержимое эукариотической клетки. Над мембраной формируется наружный слой, в животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке – толстый, называется клеточной стенкой (образован целлюлозой), в грибной клеточная стенка образована хитином, в прокариотической клетке – муреином.

Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды – триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот – гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки – наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.).

Различают периферические белки(расположены на наружной или внутренней поверхности липидного бислоя), полуинтегральные белки(погружены в липидный бислой на различную глубину) и интегральные, или трансмембранные белки(пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины, липопротеины и гликолипиды образуют надмембранный комплекс – гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны – примерно 7,5 нм.

Рис. Движение катионов по электрохимическому градиенту

Функции оболочки. Плазмалемма с гликокаликсом выполняют множество функций – отделяют клеточное содержимое от внешней среды, регулируют обмен веществ между клеткой и средой, место локализации различных «ферментативных конвейеров», обеспечивают связь между клетками в тканях многоклеточных организмов (адгезия), рецепторная функция связана с распознаванием сигналов.

Важнейшее свойство мембран – избирательная проницаемость, то есть мембраны хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство регуляции обмена веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают пассивный транспорт – процесс прохождения веществ, идущий без затрат энергии и активный транспортпроцесс прохождения веществ, идущий с затратами энергии.

Рис. . Плазмолиз и деплазмолиз в растительной клетке

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя – осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент – разность зарядов. Наружная сторона мембраны заряжена положительно, внутренняя – отрицательно, что влияет на движение через мембрану катионов и анионов. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Различают несколько видов пассивного транспорта: простую диффузию – диффузию веществ непосредственно через липидный бислой (кислород, углекислый газ); диффузию через мембранные каналы – транспорт через каналообразующие белки (Na + , K + , Ca 2+ , Cl – ); облегченную диффузию – транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды) и осмос – транспорт молекул растворителя – воды (во всех биологических системах растворителем является именно вода).

Классическим примером осмоса (движения воды через мембрану) являются явления плазмолиза и деплазмолиза. При добавлении 10% раствора поваренной соли к препарату кожицы лука наблюдается плазмолиз ионы Na + и Сl – вызывают выход воды из протопласта клетки и отставание протопласта от клеточной стенки. При удалении раствора соли и добавлении воды идет обратный процесс – деплазмолиз.

Рис. Виды транспорта через мембрану: 1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Необходимость активного транспорта возникает тогда, когда необходимо обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Примером активного транспорта является работа Na + /К + -насоса (натрий-калиевого насоса), фагоцитоз и пиноцитоз.

Работа Na + /К + -насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов «К + » и «Na + » в цитоплазме и во внешней среде. Концентрация «К + » внутри клетки должна быть значительно выше, чем за ее пределами, а «Na + » – наоборот. Следует отметить, что «Na + » и «К + » могут свободно диффундировать через мембранные каналы. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает «Na + » из клетки (против концентрационного и электростатичекого градиентов), а «K + » в клетку (против концентрационного, но по электростатическому градиенту).

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ». За один цикл работы насос выводит из клетки три «Na + »и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Эндоцитоз – процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: фагоцитоззахват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз – захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И.Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз – процесс обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших – непереваренные остатки пищи.

Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы – основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки – постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь – более жидкая гиалоплазма и гель – более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот. Цитоплазма объединяет все компоненты клетки в единую систему, среда для прохождения многих биохимических и физиологических процессов, среда для существования и функционирования органоидов.

Дата добавления: 2017-01-21 ; просмотров: 3498 | Нарушение авторских прав

источник

Adblock
detector