Меню

Формула расстояния от точки до прямой в пространстве

Данная статья рассказывает о теме «расстояния от точки до прямой», рассматриваются определения расстояния от точки к прямой с иллюстрированными примерами методом координат. Каждый блок теории в конце имеет показанные примеры решения подобных задач.

Расстояние от точки до прямой находится через определение расстояния от точки до точки. Рассмотрим подробней.

Пусть имеется прямая a и точка М 1 , не принадлежащая заданной прямой. Через нее проведем прямую b , расположенную перпендикулярно относительно прямой a . Точка пересечения прямых возьмем за Н 1 . Получим, что М 1 Н 1 является перпендикуляром, который опустили из точки М 1 к прямой a .

Расстоянием от точки М 1 к прямой a называется расстояние между точками М 1 и Н 1 .

Бывают записи определения с фигурированием длины перпендикуляра.

Расстоянием от точки до прямой называют длину перпендикуляра, проведенного из данной точки к данной прямой.

Определения эквивалентны. Рассмотрим рисунок, приведенный ниже.

Известно, что расстояние от точки до прямой является наименьшим из всех возможных. Рассмотрим это на примере.

Если взять точку Q , лежащую на прямой a , не совпадающую с точкой М 1 , тогда получим, что отрезок М 1 Q называется наклонной, опущенной из М 1 к прямой a . Необходимо обозначить, что перпендикуляр из точки М 1 является меньше, чем любая другая наклонная, проведенная из точки к прямой.

Чтобы доказать это, рассмотрим треугольник М 1 Q 1 Н 1 , где М 1 Q 1 является гипотенузой. Известно, что ее длина всегда больше длины любого из катетов. Значим, имеем, что M 1 H 1 M 1 Q . Рассмотрим рисунок, приведенный ниже.

Исходные данные для нахождения от точки до прямой позволяют использовать несколько методов решения: через теорему Пифагора, определения синуса, косинуса, тангенса угла и другими. Большинство заданий такого типа решают в школе на уроках геометрии.

Когда при нахождении расстояния от точки до прямойможно ввести прямоугольную систему координат, то применяют метод координат. В данном пункте рассмотрим основных два метода нахождения искомого расстояния от заданной точки.

Первый способ подразумевает поиск расстояния как перпендикуляра, проведенного из М 1 к прямой a . Во втором способе используется нормальное уравнение прямой а для нахождения искомого расстояния.

Если на плоскости имеется точка с координатами M 1 ( x 1 , y 1 ) , расположенная в прямоугольной системе координат, прямая a , а необходимо найти расстояние M 1 H 1 , можно произвести вычисление двумя способами. Рассмотрим их.

Если имеются координаты точки H 1 , равные x 2 , y 2 , тогда расстояние от точки до прямой вычисляется по координатам из формулы M 1 H 1 = ( x 2 – x 1 ) 2 + ( y 2 – y 1 ) 2 .

Теперь перейдем к нахождению координат точки Н 1 .

Известно, что прямая линия в О х у соответствует уравнению прямой на плоскости. Возьмем способ задания прямой a через написание общего уравнения прямой или уравнения с угловым коэффициентом. Составляем уравнение прямой, которая проходит через точку М 1 перпендикулярно заданной прямой a . Прямую обозначим буковой b . Н 1 является точкой пересечения прямых a и b , значит для определения координат необходимо воспользоваться статьей, в которой идет речь о координатах точек пересечения двух прямых.

Видно, что алгоритм нахождения расстояния от заданной точки M 1 ( x 1 , y 1 ) до прямой a проводится согласно пунктам:

  • нахождение общего уравнения прямой a , имеющее вид A 1 x + B 1 y + C 1 = 0 ,или уравнение с угловым коэффициентом, имеющее вид y = k 1 x + b 1 ;
  • получение общего уравнения прямой b , имеющее вид A 2 x + B 2 y + C 2 = 0 или уравнение с угловым коэффициентом y = k 2 x + b 2 , если прямая b пересекает точку М 1 и является перпендикулярной к заданной прямой a ;
  • определение координат x 2 , y 2 точки Н 1 , являющейся точкой пересечения a и b , для этого производится решение системы линейных уравнений A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 или y = k 1 x + b 1 y = k 2 x + b 2 ;
  • вычисление искомого расстояния от точки до прямой, используя формулу M 1 H 1 = ( x 2 – x 1 ) 2 + ( y 2 – y 1 ) 2 .

Теорема способна помочь ответить на вопрос о нахождении расстояния от заданной точки дот заданной прямой на плоскости.

Прямоугольная система координат имеет О х у имеет точку M 1 ( x 1 , y 1 ) , из которой проведена прямая а к плоскости, задаваемая нормальным уравнением плоскости, имеющее вид cos α · x + cos β · y – p = 0 , равно по модулю значению, получаемому в левой части нормального уравнения прямой, вычисляемому при x = x 1 , y = y 1 , значит, что M 1 H 1 = cos α · x 1 + cos β · y 1 – p .

Прямой а соответствует нормальное уравнение плоскости, имеющее вид cos α · x + cos β · y – p = 0 , тогда n → = ( cos α , cos β ) считается нормальным вектором прямой a при расстоянии от начала координат до прямой a с p единицами. Необходимо изобразить все данные на рисунке, добавить точку с координатами M 1 ( x 1 , y 1 ) , где радиус-вектор точки М 1 – O M 1 → = ( x 1 , y 1 ) . Необходимо провести прямую от точки до прямой, которое обозначим M 1 H 1 . Необходимо показать проекции М 2 и Н 2 точек М 1 и Н 2 на прямую, проходящую через точку O с направляющим вектором вида n → = ( cos α , cos β ) , а числовую проекцию вектора обозначим как O M 1 → = ( x 1 , y 1 ) к направлению n → = ( cos α , cos β ) как n p n → O M 1 → .

Вариации зависят от расположения самой точки М 1 . Рассмотрим на рисунке, приведенном ниже.

Результаты фиксируем при помощи формулы M 1 H 1 = n p n → O M → 1 – p . После чего приводим равенство к такому виду M 1 H 1 = cos α · x 1 + cos β · y 1 – p для того, чтобы получить n p n → O M → 1 = cos α · x 1 + cos β · y 1 .

Скалярное произведение векторов в результате дает преобразованную формулу вида n → , O M → 1 = n → · n p n → O M 1 → = 1 · n p n → O M 1 → = n p n → O M 1 → , которая является произведением в координатной форме вида n → , O M 1 → = cos α · x 1 + cos β · y 1 . Значит, получаем, что n p n → O M 1 → = cos α · x 1 + cos β · y 1 . Отсюда следует, что M 1 H 1 = n p n → O M 1 → – p = cos α · x 1 + cos β · y 1 – p . Теорема доказана.

Получаем, что для нахождения расстояния от точки M 1 ( x 1 , y 1 ) к прямой a на плоскости необходимо выполнить несколько действий:

  • получение нормального уравнения прямой a cos α · x + cos β · y – p = 0 , при условии, что его нет в задании;
  • вычисление выражения cos α · x 1 + cos β · y 1 – p , где полученное значение принимает M 1 H 1 .

Применим данные методы на решении задач с нахождением расстояния от точки до плоскости.

Найти расстояние от точки с координатами M 1 ( – 1 , 2 ) к прямой 4 x – 3 y + 35 = 0 .

Применим первый способ для решения.

Для этого необходимо найти общее уравнение прямой b , которая проходит через заданную точку M 1 ( – 1 , 2 ) , перпендикулярно прямой 4 x – 3 y + 35 = 0 . Из условия видно, что прямая b является перпендикулярной прямой a , тогда ее направляющий вектор имеет координаты, равные ( 4 , – 3 ) . Таким образом имеем возможность записать каноническое уравнение прямой b на плоскости, так как имеются координаты точки М 1 , принадлежит прямой b . Определим координаты направляющего вектора прямой b . Получим, что x – ( – 1 ) 4 = y – 2 – 3 ⇔ x + 1 4 = y – 2 – 3 . Полученное каноническое уравнение необходимо преобразовать к общему. Тогда получаем, что

x + 1 4 = y – 2 – 3 ⇔ – 3 · ( x + 1 ) = 4 · ( y – 2 ) ⇔ 3 x + 4 y – 5 = 0

Произведем нахождение координат точек пересечения прямых, которое примем за обозначение Н 1 . Преобразования выглядят таким образом:

4 x – 3 y + 35 = 0 3 x + 4 y – 5 = 0 ⇔ x = 3 4 y – 35 4 3 x + 4 y – 5 = 0 ⇔ x = 3 4 y – 35 4 3 · 3 4 y – 35 4 + 4 y – 5 = 0 ⇔ ⇔ x = 3 4 y – 35 4 y = 5 ⇔ x = 3 4 · 5 – 35 4 y = 5 ⇔ x = – 5 y = 5

Из выше написанного имеем, что координаты точки Н 1 равны ( – 5 ; 5 ) .

Необходимо вычислить расстояние от точки М 1 к прямой a . Имеем, что координаты точек M 1 ( – 1 , 2 ) и H 1 ( – 5 , 5 ) , тогда подставляем в формулу для нахождения расстояния и получаем, что

M 1 H 1 = ( – 5 – ( – 1 ) 2 + ( 5 – 2 ) 2 = 25 = 5

Для того, чтобы решить другим способом, необходимо получить нормальное уравнение прямой. Вычисляем значение нормирующего множителя и умножаем обе части уравнения 4 x – 3 y + 35 = 0 . Отсюда получим, что нормирующий множитель равен – 1 4 2 + ( – 3 ) 2 = – 1 5 , а нормальное уравнение будет вида – 1 5 · 4 x – 3 y + 35 = – 1 5 · 0 ⇔ – 4 5 x + 3 5 y – 7 = 0 .

По алгоритму вычисления необходимо получить нормальное уравнение прямой и вычислить его со значениями x = – 1 , y = 2 . Тогда получаем, что

Отсюда получаем, что расстояние от точки M 1 ( – 1 , 2 ) к заданной прямой 4 x – 3 y + 35 = 0 имеет значение – 5 = 5 .

Видно, что в данном методе важно использование нормального уравнения прямой, так как такой способ является наиболее коротким. Но первый метод удобен тем, что последователен и логичен, хотя имеет больше пунктов вычисления.

На плоскости имеется прямоугольная система координат О х у с точкой M 1 ( 8 , 0 ) и прямой y = 1 2 x + 1 . Найти расстояние от заданной точки до прямой.

Решение первым способом подразумевает приведение заданного уравнения с угловым коэффициентом к уравнению общего вида. Для упрощения можно сделать иначе.

Если произведение угловых коэффициентов перпендикулярных прямых имеют значение – 1 , значит угловой коэффициент прямой перпендикулярной заданной y = 1 2 x + 1 имеет значение 2 . Теперь получим уравнение прямой, проходящее через точку с координатами M 1 ( 8 , 0 ) . Имеем, что y – 0 = – 2 · ( x – 8 ) ⇔ y = – 2 x + 16 .

Переходим к нахождению координат точки Н 1 , то есть точкам пересечения y = – 2 x + 16 и y = 1 2 x + 1 . Составляем систему уравнений и получаем:

y = 1 2 x + 1 y = – 2 x + 16 ⇔ y = 1 2 x + 1 1 2 x + 1 = – 2 x + 16 ⇔ y = 1 2 x + 1 x = 6 ⇔ ⇔ y = 1 2 · 6 + 1 x = 6 = y = 4 x = 6 ⇒ H 1 ( 6 , 4 )

Отсюда следует, что расстояние от точки с координатами M 1 ( 8 , 0 ) к прямой y = 1 2 x + 1 равно расстоянию от точки начала и точки конца с координатами M 1 ( 8 , 0 ) и H 1 ( 6 , 4 ) . Вычислим и получим, что M 1 H 1 = 6 – 8 2 + ( 4 – 0 ) 2 20 = 2 5 .

Решение вторым способом заключается в переходе от уравнения с коэффициентом к нормальному его виду. То есть получим y = 1 2 x + 1 ⇔ 1 2 x – y + 1 = 0 , тогда значение нормирующего множителя будет – 1 1 2 2 + ( – 1 ) 2 = – 2 5 . Отсюда следует, что нормальное уравнение прямой принимает вид – 2 5 · 1 2 x – y + 1 = – 2 5 · 0 ⇔ – 1 5 x + 2 5 y – 2 5 = 0 . Произведем вычисление от точки M 1 8 , 0 к прямой вида – 1 5 x + 2 5 y – 2 5 = 0 . Получаем:

M 1 H 1 = – 1 5 · 8 + 2 5 · 0 – 2 5 = – 10 5 = 2 5

Необходимо вычислить расстояние от точки с координатами M 1 ( – 2 , 4 ) к прямым 2 x – 3 = 0 и y + 1 = 0 .

Получаем уравнение нормального вида прямой 2 x – 3 = 0 :

2 x – 3 = 0 ⇔ 1 2 · 2 x – 3 = 1 2 · 0 ⇔ x – 3 2 = 0

После чего переходим к вычислению расстояния от точки M 1 – 2 , 4 к прямой x – 3 2 = 0 . Получаем:

Уравнение прямой y + 1 = 0 имеет нормирующий множитель со значением равным -1. Это означает, что уравнение примет вид – y – 1 = 0 . Переходим к вычислению расстояния от точки M 1 ( – 2 , 4 ) к прямой – y – 1 = 0 . Получим, что оно равняется – 4 – 1 = 5 .

Читайте также:  Как заготовить семена томатов в домашних условиях

Подробно рассмотрим нахождение расстояния от заданной точки плоскости к координатным осям О х и О у .

В прямоугольной системе координат у оси О у имеется уравнение прямой, которое является неполным имеет вида х = 0 , а О х – y = 0 . Уравнения являются нормальными для осей координат, тогда необходимо найти расстояние от точки с координатами M 1 x 1 , y 1 до прямых. Это производится, исходя из формул M 1 H 1 = x 1 и M 1 H 1 = y 1 . Рассмотрим на рисунке, приведенном ниже.

Найти расстояние от точки M 1 ( 6 , – 7 ) до координатных прямых, расположенных в плоскости О х у .

Так как уравнение у = 0 относится к прямой О х , можно найти расстояние от M 1 с заданными координатами, до этой прямой, используя формулу. Получаем, что 6 = 6 .

Так как уравнение х = 0 относится к прямой О у , то можно найти расстояние от М 1 к этой прямой по формуле. Тогда получим, что – 7 = 7 .

Ответ: расстояние от М 1 к О х имеет значение 6 , а от М 1 к О у имеет значение 7 .

Когда в трехмерном пространстве имеем точку с координатами M 1 ( x 1 , y 1 , z 1 ) , необходимо найти расстояние от точки A до прямой a .

Рассмотрим два способа, которые позволяют производить вычисление расстояние от точки до прямой a , расположенной в пространстве. Первый случай рассматривает расстояние от точки М 1 к прямой, где точка на прямой называется Н 1 и является основанием перпендикуляра, проведенного из точки М 1 на прямую a . Второй случай говорит о том, что точки этой плоскости необходимо искать в качестве высоты параллелограмма.

Из определения имеем, что расстояние от точки М 1 , расположенной на прямой а, является длиной перпендикуляра М 1 Н 1 , тогда получим, что при найденных координатах точки Н 1 , тогда найдем расстояние между M 1 ( x 1 , y 1 , z 1 ) и H 1 ( x 1 , y 1 , z 1 ) , исходя из формулы M 1 H 1 = x 2 – x 1 2 + y 2 – y 1 2 + z 2 – z 1 2 .

Получаем, что все решение идет к тому, чтобы найти координаты основания перпендикуляра, проведенного из М 1 на прямую a . Это производится следующим образом: Н 1 является точкой, где пересекаются прямая a с плоскостью, которая проходит через заданную точку.

Значит, алгоритм определения расстояния от точки M 1 ( x 1 , y 1 , z 1 ) к прямой a пространства подразумевает несколько пунктов:

  • составление уравнение плоскости χ в качестве уравнения плоскости, проходящего через заданную точку, находящуюся перпендикулярно прямой;
  • определение координат ( x 2 , y 2 , z 2 ) , принадлежавших точке Н 1 , которая является точкой пересечения прямой a и плоскости χ ;
  • вычисление расстояния от точки до прямой при помощи формулы M 1 H 1 = x 2 – x 1 2 + y 2 – y 1 2 + z 2 – z 1 2 .

Из условия имеем прямую a , тогда можем определить направляющий вектор a → = a x , a y , a z с координатами x 3 , y 3 , z 3 и определенной точки М 3 ,принадлежащей прямой a . При наличии координат точек M 1 ( x 1 , y 1 ) и M 3 x 3 , y 3 , z 3 можно произвести вычисление M 3 M 1 → :

M 3 M 1 → = ( x 1 – x 3 , y 1 – y 3 , z 1 – z 3 )

Следует отложить векторы a → = a x , a y , a z и M 3 M 1 → = x 1 – x 3 , y 1 – y 3 , z 1 – z 3 из точки М 3 , соединим и получим фигуру параллелограмма. М 1 Н 1 является высотой параллелограмма.

Рассмотрим на рисунке, приведенном ниже.

Имеем, что высота М 1 Н 1 является искомым расстоянием, тогда необходимо найти его по формуле. То есть ищем M 1 H 1 .

Обозначим площадь параллелограмма за букву S , находится по формуле, используя вектор a → = ( a x , a y , a z ) и M 3 M 1 → = x 1 – x 3 . y 1 – y 3 , z 1 – z 3 . Формула площади имеет вид S = a → × M 3 M 1 → . Также площадь фигуры равняется произведению длин его сторон на высоту, получим, что S = a → · M 1 H 1 с a → = a x 2 + a y 2 + a z 2 , являющимся длиной вектора a → = ( a x , a y , a z ) , являющейся равной стороне параллелограмма. Значит, M 1 H 1 является расстоянием от точки до прямой. Ее нахождение производится по формуле M 1 H 1 = a → × M 3 M 1 → a → .

Для нахождения расстояния от точки с координатами M 1 ( x 1 , y 1 , z 1 ) до прямой a в пространстве, необходимо выполнить несколько пунктов алгоритма:

  • определение направляющего вектора прямой a – a → = ( a x , a y , a z ) ;
  • вычисление длины направляющего вектора a → = a x 2 + a y 2 + a z 2 ;
  • получение координат x 3 , y 3 , z 3 , принадлежавших точке М3, находящейся на прямой а;
  • вычисление координат вектора M 3 M 1 → ;
  • нахождение векторного произведения векторов a → ( a x , a y , a z ) и M 3 M 1 → = x 1 – x 3 , y 1 – y 3 , z 1 – z 3 в качестве a → × M 3 M 1 → = i → j → k → a x a y a z x 1 – x 3 y 1 – y 3 z 1 – z 3 для получения длины по формуле a → × M 3 M 1 → ;
  • вычисление расстояния от точки до прямой M 1 H 1 = a → × M 3 M 1 → a → .

Найти расстояние от точки с координатами M 1 2 , – 4 , – 1 к прямой x + 1 2 = y – 1 = z + 5 5 .

Первый способ начинается с записи уравнения плоскости χ , проходящей через М 1 и перпендикулярно заданной точке. Получаем выражение вида:

2 · ( x – 2 ) – 1 · ( y – ( – 4 ) ) + 5 · ( z – ( – 1 ) ) = 0 ⇔ 2 x – y + 5 z – 3 = 0

Нужно найти координаты точки H 1 , являющейся точкой пересечения с плоскостью χ к заданной по условию прямой. Следует переходить от канонического вида к пересекающемуся. Тогла получаем систему уравнений вида:

x + 1 2 = y – 1 = z + 5 5 ⇔ – 1 · ( x + 1 ) = 2 · y 5 · ( x + 1 ) = 2 · ( z + 5 ) 5 · y = – 1 · ( z + 5 ) ⇔ x + 2 y + 1 = 0 5 x – 2 z – 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x – 2 z – 5 = 0

Необходимо вычислить систему x + 2 y + 1 = 0 5 x – 2 z – 5 = 0 2 x – y + 5 z – 3 = 0 ⇔ x + 2 y = – 1 5 x – 2 z = 5 2 x – y + 5 z = 3 по методу Крамера, тогда получаем, что:

∆ = 1 2 0 5 0 – 2 2 – 1 5 = – 60 ∆ x = – 1 2 0 5 0 – 2 3 – 1 5 = – 60 ⇔ x = ∆ x ∆ = – 60 – 60 = 1 ∆ y = 1 – 1 0 5 5 2 2 3 5 = 60 ⇒ y = ∆ y ∆ = 60 – 60 = – 1 ∆ z = 1 2 – 1 5 0 5 2 – 1 3 = 0 ⇒ z = ∆ z ∆ = 0 – 60 = 0

Отсюда имеем, что H 1 ( 1 , – 1 , 0 ) .

Необходимо рассчитать расстояние между точками с координатами M 1 ( 2 , – 4 , – 1 ) и H 1 ( 1 , – 1 , 0 ) по формуле:

M 1 H 1 = 1 – 2 2 + – 1 – – 4 2 + 0 – – 1 2 = 11

Второй способ необходимо начать с поиска координат в каноническом уравнении. Для этого необходимо обратит внимание на знаменатели дроби. Тогда a → = 2 , – 1 , 5 является направляющим вектором прямой x + 1 2 = y – 1 = z + 5 5 . Необходимо вычислить длину по формуле a → = 2 2 + ( – 1 ) 2 + 5 2 = 30 .

Понятно, что прямая x + 1 2 = y – 1 = z + 5 5 пересекает точку M 3 ( – 1 , 0 , – 5 ) , отсюда имеем, что вектор с началом координат M 3 ( – 1 , 0 , – 5 ) и его концом в точке M 1 2 , – 4 , – 1 является M 3 M 1 → = 3 , – 4 , 4 . Находим векторное произведение a → = ( 2 , – 1 , 5 ) и M 3 M 1 → = ( 3 , – 4 , 4 ) .

Мы получаем выражение вида a → × M 3 M 1 → = i → j → k → 2 – 1 5 3 – 4 4 = – 4 · i → + 15 · j → – 8 · k → + 20 · i → – 8 · j → = 16 · i → + 7 · j → – 5 · k →

получаем, что длина векторного произведения равняется a → × M 3 M 1 → = 16 2 + 7 2 + – 5 2 = 330 .

Имеются все данные для использования формулы вычисления расстояния от точки для прямлой, поэтому применим ее и получим:

M 1 H 1 = a → × M 3 M 1 → a → = 330 30 = 11

источник

С помощю этого онлайн калькулятора можно найти расстояние от точки до прямой. Дается подробное решение с пояснениями. Для вычисления расстояния от точки до прямой, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точки и элементы уравнения в ячейки и нажимайте на кнопку “Решить”.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Рассмотрим эту задачу в двухмерном и трехмерном пространствах.

Пусть в двухмерном пространстве задана точка M(x, y) и прямая L:

где q=(m,p) направляющий вектор прямой L.

Найдем расстояние от точки M до прямой (1)(Рис.1).

Алгоритм нахождения расстояния от точки M до прямой L содержит следующие шаги:

  • построить прямую L1, проходящую через точку M и перпендикулярную прямой L,
  • найти пересечение прямых L и L1(точка M1)
  • найти найти расстояние между точками M и M1.

Уравнение прямой, проходящей через точку M(x, y) имеет следующий вид:

Как видно из рисунка Рис.1, для того, чтобы прямая L1 была перпендикулярна прямой L нужно , чтобы направляющий вектор q прямой L была коллинеарна нормальному вектору n прямой L1, поэтому в качестве нормального вектора прямой L1 достаточно взять направляющий вектор прямой L. Тогда уравнение прямой L1, представленной уравнением (2) можно записать так:

Для нахождения точки пересечения прямых L и L1, которая и будет проекцией точки M на прямую L, можно решить систему из двух уравнений (1) и (3) с двумя неизвестными x и y. Выражая неизвестную x из одного уравнения и подставляя в другое уравнение получим координаты точки M1(x1, y1).

Найдем точку пересечения прямых L и L1 другим методом.

Выведем параметрическое уравнение прямой (1):

Подставим значения x и y в (4):

Мы нашли такое значение t=t’, при котором координаты x и y точки на прямой L удовлетворяют уравнению прямой L1(4). Следовательно, подставляя значение t’ в (5) получим координаты проекции точки M на прямую L:

Далее находим расстояние между точками M и M1 используя формулу:

Пример 1. Найти расстояние от точки M(−6, 2) до прямой

Направляющий вектор прямой (8) имеет вид:

Т.е. m=2, p=−1. Из уравнения прямой (8) видно, что она проходит через точку M’ (x’, y’)=(1, 7)(в этом легко убедится − подставляя эти значения в (8) получим тождество 0=0), т.е. x’=1, y’=7. Подставим значения m, p, x, y, x’, y’ в (6):

Подставляя значение t в (5), получим:

Вычислим расстояние между точками M(-6, 2) и M1

Расстояние от точки M(-6, 2) до прямой (8) :

где q=(m, p, l) направляющий вектор прямой L.

Найдем расстояние от точки M до прямой (9)(Рис.2).

Алгоритм нахождения расстояния от точки до прямой L содержит следующие шаги:

  • построить плоскость α, проходящую через точку M и перпендикулярную прямой L,
  • найти пересечение плоскости α и прямой L(точка M1)
  • найти расстояние между точками M и M1.

где n=(A,B,C) нормальный вектор плоскости α.

Как видно из рисунка Рис.2, для того, чтобы плоскость α была перпендикулярна прямой L нужно , чтобы направляющий вектор q прямой L была коллинеарна нормальному вектору n плоскости α, поэтому в качестве нормального вектора плоскости α достаточно взять направляющий вектор прямой L. Тогда уравнение плоскости α, представленной уравнением (10) можно записать так:

Читайте также:  Как делать творог из прокисшего молока в домашних условиях

Для нахождения точки пересечения плоскости α и прямой L, которая и будет проекцией точки M на прямую L, выведем параметрическое уравнение прямой (9):

Подставим значения x и y в (11):

Мы нашли такое значение t=t’, при котором координаты x,y и z точки на прямой L удовлетворяют уравнению плоскости (11). Следовательно, подставляя значение t’ в (12) получим координаты проекции точки M на прямую L:

Далее вычисляем расстояние между точками M и M1 используя формулу

, (14)

которое является расстоянием между точкой M и прямой (9).

Пример 2. Найти расстояние от точки M(1, 2, 1) до прямой

Направляющий вектор прямой (15) имеет вид:

Т.е. m=2, p=4, l=−6. Из уравнения прямой (15) видно, что она проходит через точку M’ (x’, y’, z’)=(4, 3, 1)(в этом легко убедится − подставляя эти значения в (15) получим тождество 0=0=0), т.е. x’=4, y’=3, z’=1. Подставим значения m, p, l x, y, z x’, y’, z’ в (13):

Подставляя значение t=t’ в (12), получим координаты точки M1:

Далее, используя формулу (14) вычисляем расстояние от точки M до прямой (15):

.

Расстояние от точки M(1, 2, 1) до прямой (15) :

источник

Расстояние от точки до плоскости.

Пусть дана плоскость с уравнением и точка с радиус-вектором . Рассмотрим вектор , соединяющий начальную точку плоскости с . Расстояние от точки до плоскости равно модулю его скалярной проекции на вектор , т.е.

Если в декартовой прямоугольной системе координат точка имеет координаты , то равенство перепишется в виде

Расстояние от точки до прямой.

Если прямая задана уравнением , то мы можем найти расстояние от точки с радиус вектором , до этой прямой, разделив площадь параллелограмма, построенного на векторах и , на длину его основания. Результат можно записать в виде

Рассмотрим прямую на плоскости, тогда получаем

Расстояние между скрещивающимися прямыми.

Пусть прямые и не параллельны. Известно, что в этом случае существуют такие параллельные плоскости и , что прямая лежит в , а прямая в . Расстояние между и называется расстоянием между прямыми и . Если и пересекаются, то и совпадают и .

Для того чтобы найти расстояние , проще всего разделить объем параллелепипеда, построенного на векторах , и , на площадь его основания. Мы получим

Стандартная версия | Мобильная версия
© 2010-2019 mipt1.ru Операция “Раздолбай”

источник

Расстояние — это мера, характеризующая удалённость нескольких объектов друг относительно друга. Термин “расстояние” применим как в пространстве, так и на плоскости.

Рассмотрим небольшую иллюстрацию.

Мы видим на рисунке 2 точки. Необходимо найти расстояние между ними.

Для выполнения данной задачи необходимо использовать любой измерительный инструмент, например, линейку.

Необходимо приложить его начало к одной из точек, а конец к другой, и списать полученное с линейки число.

Также для измерения можно использовать, например, циркуль. С помощью него можно даже измерять толщину складок жира, прикладывая циркуль после снятия замера к линейке.

Очень часто для обозначения расстояния используют греческую букву $ρ$.

Перейдём к рассмотрению частного случая: поиску расстояния между точкой и прямой.

Рассматривая прямую и точку, не возлежащую на ней, следует помнить, что они всегда образуют плоскость по одной из основных аксиом объёмной геометрии, поэтому рассматривать эту задачу можно как одну из планиметрических.

Попробуй обратиться за помощью к преподавателям

Рисунок 3. Точка и не проходящая через неё прямая — служат характеристиками плоскости

Теорему, об образовании одной-единственной плоскости точкой и прямой можно вывести из аксиомы, в которой говорится, что три точки описывают плоскость.

Дело в том, что на любой прямой всегда можно отметить 2 произвольные несовпадающие точки, а некая третья точка у нас уже дана. Вот и всё доказательство теоремы.

Расстояние между точкой и прямой — это перпендикуляр, который опускают с этой прямой в рассматриваемую точку.

Рассмотрим, что же такое расстояние от точки до прямой на примере задачи ниже.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Рисунок 4. Найти расстояние от точки до прямой

Найдите расстояние от $l$ до $X$.

Опустим из точки $X$ перпендикуляр на прямую $l$. Также на прямой отметим любую точку, не совпадающую с точкой пересечения перпендикуляра из точки $X$ с прямой $l$, назовём её $Z$.

У нас получился прямоугольный треугольник $XYZ$.

Гипотенуза в этом треугольнике, как мы знаем, лежит напротив прямого угла, причём гипотенуза является самой длинной стороной, значит, кратчайшим путём между точкой и прямой будет $YX$, являющийся перпендикуляром.

Причём длина $XY$ всегда будет меньше длины $XZ$ вне зависимости от того, где именно на прямой поставить точку $Z$.

Одной из наиболее частых задач по данной теме на плоскости и в пространстве является определение расстояния от прямой до точки по координатам точки и уравнению прямой.

На практике обычно не очень удобно заниматься таким построением в масштабе 1:1, поэтому обычно поиск кратчайшей длины между точкой и прямой осуществляется аналитически.

Рассмотрим решение такой задачи на плоскости.

Дано уравнение некой прямой $m$: $y= 3x + 2$ и точка $M$, не возлежащая на ней, её икс и игрек $(2;0)$.

Определить расстояние между точкой и прямой.

Опускаем перпендикуляр из точки $M$ на прямую $m$.

Теперь, для того чтобы высчитать его длину, нужно найти координаты пересечения перпендикуляра, опущенного из точки $M$ с прямой $m$. Назовём точку их пересечения $D$.

Для того чтобы найти точку пересечения перпендикуляра, опущенного из нашей точки на прямую $m$, необходимо сначала получить уравнение этого перпендикуляра.

Для этого перепишем уравнение прямой $m$ в общем виде: $3x-y+2=0$.

При записи в такой форме не трудно увидеть, что нормальный вектор этой прямой имеет координаты $(3;-1)$.

Нормальный вектор для этой прямой является направляющим для перпендикуляра.

Также нам известно, что этот перпендикуляр проходит через точку $M$ с координатами $(2;0)$.

Следовательно, мы можем записать его уравнение:

Для того чтобы найти координаты точки пересечения перпендикуляра $MD$ с прямой $m$, необходимо решить систему уравнений:

Для этого выражаем $y$ из второго уравнения:

И затем подставляем его в первое:

Избавляемся от знаменателя, умножив всё на $3$:

Подставляем полученный икс во второе уравнение:

То есть точка пересечения перпендикуляра с прямой $m$ имеет координаты $(-0,4;0,8)$.

Ответ: расстояние между точкой и прямой равно $0,89$.

При определении расстояния от точки до прямой в пространстве можно воспользоваться следующей формулой:

$ρ = \frac<\sqrt<\begin <|cc|>y_1 – y_0 & z_1 – z_0\\ m_1 & n_1 \\ \end^2 + \begin <|cc|>x_1 – x_0 & z_1 – z_0\\ l_1 & n_1 \\ \end^2 + \begin <|cc|>x_1 – x_0 & y_1 – y_0\\ l_1 & m_1 \\ \end^2>><\sqrt>$

В этой формуле $x_0, y_0, z_0$ – координаты точки, $x_1, y_1, z_1$ – координаты нормального вектора заданной прямой, а $l_1, m_1, n_1$ — координаты направляющего вектора прямой.

Эта формула также выведена из построений, аналогичных построением при решении подобной задачи на плоскости, но выглядит она более тяжеловесно.

Однако, этого не стоит пугаться, так как довольно удобно пользоваться.

Но, возможно, что новичкам перед её использованием придётся ознакомиться с тем, как высчитывать определитель матрицы.

Рассмотрим задачу с использованием этой формулы.

Дана прямая $w$ $\frac<1>=\frac <2>=\frac<4>$ и точка $K$ c координатами $(1;2;3)$.

Найдите расстояние от $w$ до $K$ в пространстве.

Направляющий вектор для заданной прямой имеет координаты $<1;2;4>$, а нормальный вектор — $<5;-1;4>$.

Подставим все эти числа в формулу для нахождения расстояния:

Расстояние между прямой и точкой в данном случае составит $5,080$.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Это совсем короткая тема. И совсем не сложная.

Чтобы найти расстояние от точки до прямойв пространстве, нужно из этой точки опустить перпендикуляр на прямую и найти длину этого перпендикуляра.

В задачах, как правило, отрезок \displaystyle AH – это высота какой-либо фигуры (чаще всего – треугольника).

Давай убедимся в этом на примерах.

В кубе с ребром, равным , найти расстояние от точки до прямой .

Первым делом организуем треугольник. Как? Да очень просто – соединим точку с точками и . Так можно делать в любой задаче, потому что любые три точки лежат в одной плоскости.

Итак, получился треугольник

Теперь найдем требуемое расстояние от точки до прямой:

Чтобы найти расстояние от точки до прямой , теперь достаточно найти высоту в

Что же это за треугольник? Смотри внимательно:

– диагональ квадрата со стороной , значит , то есть .

Но – тоже диагональ квадрата со стороной , значит ; .

А ? Конечно же , и это диагональ квадрата со стороной , поэтому ; .

Осталось применить теорему Пифагора:

Следовательно, расстояние от точки до прямой равно:

Читайте также:  Как развести белые грибы на даче

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте – нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

  1. Открой доступ ко всем скрытым задачам в этой статье – Купить статью – 299 руб
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника – Купить учебник – 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

источник

  • Вы здесь:
  • Home
  • Высшая математика.
  • Аналитическая геометрия.
  • Прямая в пространстве, всевозможные уравнения, взаимное расположение прямых в пространстве, расстояние от точки до прямой в пространстве.

Прямая в пространстве, всевозможные уравнения, взаимное расположение прямых в пространстве, расстояние от точки до прямой в пространстве.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения прямой в пространстве:

1) $\left\<\beginA_1x+B_1y+C_1z+D_1=0\quad (P_1)\\ A_2x+B_2y+C_2z+D_2=0\quad (P_2)\end\right. – $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$

2) $\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$ Вектор $\overline S$ является направляющим вектором прямой $L.$

3) $\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:

Расположение двух прямых в пространстве.

Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $\overline_1\parallel\overline_2\Leftrightarrow$ $\frac=\frac=\frac.$

Условие перпендикулярности двух прямых: $L_1\perp L_2\Leftrightarrow$ $\overline_1\perp\overline_2\Leftrightarrow$ $\cdot+\cdot+p_1\cdot p_2=0.$

Угол между прямыми:

Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.

Пусть прямая $L$ задана уравнением $\frac=\frac=\frac

,$ следовательно $\overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:

а) Воспользуемся формулой (2) уравнения прямой в пространстве:

$\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$

По условию $M_0(2, 0, -3)$ и $\overline=q(2,-3,5).$

б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $\frac<5>=\frac<2>=\frac<-1>$ имеет координаты $\overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(5, 2, -1)$ как и в пункте а):

в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$

д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой

$\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ можно найти как векторное произведение нормалей заданных плоскостей.

Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$

для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ имеет координаты $\overline S (-4, 8, 10).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(-4, 8, 10):$

е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$ Для этого запишем уравнение этой прямой в каноническом виде:

Отсюда находим направляющий вектор $\overline S\left(1, 2, -\frac<1><2>\right).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $\overline S_1(2, 4, -1).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(2, 4, -1):$

2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$

Воспользуемся формулой (3) уравнения прямой в пространстве:

$\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

Подставляем заданные точки:

2.204. Найти расстояние между параллельными прямыми

Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=\frac<|[\overline, \overline S]|><|\overline S|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 – $произвольная точка прямой $L_2,$ $\overline S -$ направляющий вектор прямой $L_2.$

Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)\in L_1,$ $M_2=(7, 1, 3)\in L_2,$ $\overline S=(3, 4, 2). $

Отсюда находим $\overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$

2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.

Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:

Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:

Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$

для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

имеет координаты $\overline S (-2, -1, 2).$

Теперь можно воспользоваться формулой $$d(A, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

$\overline=\left(2-(-14),3-\left(-\frac<25><2>\right),-1-0\right)=\left(16, 15\frac<1><2>, -1\right)$

Ответ: $d(A, L)=15.$

2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: \frac<3>=\frac<-2>=\frac<2>.$

Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$

$P: 3x-2y-3z-7=0\Rightarrow \overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $\overline N(3, -2, -3).$

$P_1: 3x-9-2y-4-3z-12=0 \Rightarrow$

Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:

Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$

Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:

Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$

Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$– это и будет искомая прямая. Воспользуемся формулой ( 3) $\frac=\frac=\frac :$

б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$

б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $\left\<\beginx=3t+5,\\ y=2t,\\z=-2t-25. \end\right.$

2.206. Доказать, что прямые $L_1: \left\<\begin2x+2y-z-10=0,\\ x-y-z-22=0, \end\right.$ и $L_2: \frac<3>=\frac<-1>=\frac<4>.$ параллельны и найти расстояние $\rho(L_1, L_2)$

2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $\frac<5>=\frac<-2>=\frac<-1>$ и $\frac<4>=\frac<-6>=\frac<2>.$

2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $\frac<1>=\frac<4>=\frac<2>.$

источник

Adblock
detector