Меню

Физика как считать погрешность измерений

Сейчас 16 гостей и ни одного зарегистрированного пользователя на сайте

  • Пуск
  • Физика
  • Всё о погрешностях
  • Как определять погрешность измерений (учебник Физика 10)

1. Как определять погрешности измерений.

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой их результатов.

Измерение — нахождение значения физической величины опытным путем с помощью средств измерений.

Прямое измерение — определение значения физической величины непосредственно средствами измерения.

Косвенное измерение — определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.

Введем следующие обозначения:

А, В, С, . — физические величины.

Апр — приближенное значение физической величины, т. е. значение, полученное путем прямых или косвенных измерений.

ΔА — абсолютная погрешность измерения физической величины.

ε — относительная погрешность измерения физической величины, равная:

ΔИА — абсолютная инструментальная погрешность, определяемая конструкцией прибора (погрешность средств измерения; см. табл. 1).

ΔА — абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения); она равна в большинстве случаев половине цены деления, при измерении времени — цене деления секундомера или часов.

Абсолютные инструментальные погрешности средств измерений

Средства измерения Предел измерения Цена деления Абсолютная инструментальная погрешность
1 Линейка
ученическая до 50 см 1 мм ± 1 мм
чертежная до 50 см 1 мм ± 0,2 мм
инструментальная (стальная) 20 см 1 мм ± 0,1 мм
демонстрационная 100 см 1 см ± 0,5 см
2 Лента измерительная 150 см 0,5 см ± 0,5 см
3 Измерительный цилиндр до 250 мл 1 мл ± 1 мл
4 Штангенциркуль 150 мм 0,1 мм ± 0,05 мм
5 Микрометр 25 мм 0,01 мм ± 0,005 мм
6 Динамометр учебный 4 Н 0,1 Н ± 0,05 Н
7 Весы учебные 200 г ± 0,01 г
8 Секундомер 0-30 мин 0,2 с ± 1 с за 30 мин
9 Барометр-анероид 720-780 мм рт. ст. 1 мм рт. ст. ± 3 мм рт. ст.
10 Термометр лабораторный 0-100 0 С 1 0 С ± 1 0 С
11 Амперметр школьный 2 А 0,1 А ± 0,05 А
12 Вольтметр школьный 6 В 0,2 В ± 0,15 В

Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:

Абсолютную погрешность измерения обычно округляют до одной значащей цифры (ΔА = 0,17 ≈ 0,2); числовое значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А = 10,332 ≈ 10,3).

Результаты повторных измерений физической величины А, проведенных при одних и тех же контролируемых условиях и при использовании достаточно чувствительных и точных (с малыми погрешностями) средств измерения, обычно отличаются друг от друга. В этом случае Апр находят как среднее арифметическое значение всех измерений, а погрешность ΔА (ее называют случайной погрешностью) определяют методами математической статистики.

В школьной лабораторной практике такие средства измерения практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин. Для получения результата достаточно одного измерения.

Относительная погрешность косвенных измерений определяется так, как показано в таблице 2.

Формулы для вычисления относительной погрешности косвенных измерений

Формула для физической величины Формула для относительной погрешности
1
2
3
4

Абсолютная погрешность косвенных измерений определяется по формуле ΔА = Апрε (ε выражается десятичной дробью).

2. О классе точности электроизмерительных приборов.

Для определения абсолютной инструментальной погрешности прибора надо знать его класс точности. Класс точности γпр измерительного прибора показывает, сколько процентов составляет абсолютная инструментальная погрешность ΔиА от всей шкалы прибора (Amax):

Класс точности указывают на шкале прибора или в его паспорте (знак % при этом не пишут). Существуют следующие классы точности электроизмерительных приборов: 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Зная класс точности прибора (γпр) и всю его шкалу (Аmах), определяют абсолютную погрешность ΔиА измерения физической величины А этим прибором:

3. Как сравнивать результаты измерений.

1. Записать результаты измерений в виде двойных неравенств:

источник

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными, если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Абсолютная и относительная погрешность. Пусть проведеноNизмерений одной и той же величиныxв отсутствии систематической погрешности. Отдельные результаты измерений имеют вид:x1,x2, …,xN. В качестве наилучшего выбирается среднее значение измеренной величины:

. (1)

Абсолютной погрешностьюединичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности Nединичных измерений:

(2)

называется средней абсолютной погрешностью.

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

. (3)

Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

Погрешность электроизмерительных приборов вычисляется согласно классу точности С, указанному на шкале прибора:

Например: и,

Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b, c, значения которых можно найти прямыми измерениями: Х = f(a,b,c…).

Среднее арифметическое результата косвенных измерений будет равно:

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a,b,c…). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем:lnX = lna + lnb + ln(c+d).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 = . (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

4) Логарифмируют исходную формулу Х = f(a,b,c…) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Абсолютные и относительные погрешности простейших функций приведены в таблице:

источник

Погрешностью измерений в физике считается результат измерения физической величины, в независимости от разновидности применения технического средства при измерении.

При этом, каким бы тщательным образом не производилось измерение, в результате оно всегда будет отличаться на некоторую величину от своего истинного значения.

В зависимости от условий, способствующих проведению соответствующего измерения, а также качества подготовки экспериментатора и вида задействованного при измерении технического средства, будет зависеть погрешность измерений.

Погрешность измерения принято считать в физике отклонением значения величины, получившегося после измерения, от ее действительного (истинного) значения. Погрешность измерения представляет собой характеристику точности измерения.

При этом, как правило, невозможным становится выяснение с абсолютной точностью истинного значения измеряемой величины. По этой причине становится невозможным и указание степени отклонения полученного при измерении значения от истинного. Подобное отклонение физики называют ошибкой измерения. Оценка величины такого отклонения возможна только посредством задействования статистических методов.

Попробуй обратиться за помощью к преподавателям

На практике истинное значение заменяется использованием значения физической величины, полученного экспериментальным способом и настолько близкого к истинному значению, что в поставленной измерительной задаче смело может применяться вместо него. Подобное значение, зачастую, вычисляется в качестве среднестатистического значения, полученного в момент статистической обработки результатов серии измерений.

Читайте также:  Как формировать томаты в два стебля

Такое значение точным не является, но представляет собой наиболее вероятное. По этой причине в измерениях требуется указание степени его точности. С этой целью, наряду с полученным результатом, указывают погрешность измерений.

В целях классифицирования погрешностей, в физике применяются следующие признаки: характер проявления, источник появления, условия для проведения измерений, способ выражения, временное поведение величины при измерении.

По источнику возникновения определяются такие виды погрешностей:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

  • погрешность метода измерений считается составляющей погрешности измерений, происходящей от несовершенства применяемого метода измерений и приёма задействования средств измерений;
  • инструментальная погрешность измерений является составляющей погрешности, зависимой от погрешности используемых средств измерений, иными словами – от степени их точности;
  • субъективная погрешность измерений представляет собой составляющую погрешности измерений, обусловленную несовершенством органов чувств экспериментатора;
  • погрешность считывания считается составляющей погрешности измерений, происходящей вследствие неточного считывания показаний со средства измерения;
  • погрешность интерполяции представляет собой составляющую погрешности считывания, возникающей вследствие неточной от оценки доли деления шкалы, соответствующей положению указателя;
  • погрешность параллакса считается составляющей погрешности считывания, возникающей при неперпендикулярном поверхности шкалы визировании измерительной стрелки.

Погрешности средств измерений делят, в зависимости от давления, влажности и температуры, на основную и дополнительную.

Основная погрешность обычно применяется в нормальных условиях работы измерительных приборов, за которые принимается температура $+20 \pm 5 ^\circ C$, а для высокоточных приборов $+20 \pm 1 ^\circ C$; относительная влажность $65 \pm 15 \%$ (с учетом температуры $+ 20 ^\circ C$); давление $100 000 \pm 4000 Па$.

Дополнительная погрешность, в свою очередь, провоцируется отклонением от нормального значения одной или нескольких влияющих величин. При этом она может оказаться в несколько раз выше основной погрешности.

Погрешности измерений разделяются по характеру своих проявлений на: систематические, случайные и грубые.

Систематические погрешности считаются составляющими погрешностями измерения, которые сохраняют свое постоянство либо изменяются в случае повторных измерений одной и той же величины, благодаря одним и тем же приборам и посредством одного и того же метода. Систематические погрешности возникают вследствие неправильного градуирования шкалы измерительного прибора и изменения момента противодействия.

Случайные погрешности изменяются случайным способом в случае повторных измерений одной и той же величины. Они, в свою очередь, обусловлены неодинаковыми при каждом измерении причинами, и поэтому не могут быть учтены.

Грубые погрешности измерений являются погрешностями, превышающими ожидаемые при данных условиях для измерения. Они могут возникать как следствие небрежности экспериментатора или резких изменений условий измерений.

В зависимости от временного поведения измеряемой величины при измерении определяется:

статистическая погрешность, когда измеряют постоянную во времени величину; динамическая погрешность, когда производится измерение переменной во времени величины, при этом такая погрешность возникает в том случае, когда измерительный прибор не успел отследить изменения измеряемой величины.

В зависимости от задействования определенного вида измерения, производится соответствующая оценка погрешностей.

Так, в случае использования метода прямого измерения, значение величины определяется непосредственно согласно шкале измерительного прибора, который был задействован в данном случае (динамометра, линейки, часов и др.) При совпадении результатов повторных опытов в пределах максимальной точности измерительного прибора, погрешность измерения считается равнозначной цене деления шкалы прибора.

В случае задействования косвенного метода измерения, значение измеряемой величины устанавливается уже не по непосредственным показаниям прибора, а на основании специальных формул, в которые включены значения физических величин, полученных за счет прямых измерений.

При определении плотности вещества изначально производят измерение массы и объема тела и далее вычисляют плотность.

Одним из максимально упрощенных методов оценки погрешности косвенных измерений считается в физике метод границ, состоящий в том, что посредством специальной формулы, по которой вычисляется измеряемая величина, находятся два ее значения: минимальное и максимальное, и далее вычисляется разница между ними, которая и будет являться истинным значением рассчитываемой величины.

Абсолютная погрешность измерения тогда получится при делении величины, полученной при разнице между максимальным и минимальным значением, на два.

А среднее значение, в свою очередь, рассчитывается делением суммы максимального и минимального значений величины на два.

При этом, округление результатов измерений и вычислений следует производить таким образом, чтобы последняя значащая цифра оказалась в одном с абсолютной погрешностью измеряемой величины десятичном разряде.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

ОЦЕНКА ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ ПРИ ВЫПОЛНЕНИИ

ЛАБОРАТОРНЫХ РАБОТ ПО ФИЗИКЕ

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой полученных результатов. Поскольку не существует абсолютно точных приборов и других средств измерения, следовательно, не бывает и абсолютно точных результатов измерения. Погрешности возникают при любых измерениях, и только правильная оценка погрешностей проведенных измерений и расчетов позволяет выяснить степень достоверности полученных результатов.

Абсолютная погрешность измерения

Предположим, что диаметр стержня, измеренный штангенциркулем, оказался равным 14 мм. Можно ли быть уверенным, что он пройдет в “идеальное” отверстие того же диаметра? Если бы этот вопрос был поставлен чисто ”теоретически“, то ответ был бы утвердительным, но на практике может получиться иначе. Диаметр стержня был определен с помощью реального измерительного прибора, следовательно, с некоторой погрешностью. Значит 14 мм – это приближенное значение диаметра – Xпр. Определить его истинное значение невозможно, можно только указать некоторые границы достоверности полученного приближенного результата, внутри которых находится истинное значение диаметра нашего стержня. Эта граница называется границей абсолютной погрешности и обозначается ΔX (её часто называют просто абсолютной погрешностью). Поэтому наш стержень может пройти в отверстие, а так же может и не пройти в него: все зависит от того, в каком месте интервала [Xпр – ΔX, Xпр + ΔX] находится истинное значение диаметра нашего стержня. На рисунке 1 показан случай, когда стержень в отверстие не пройдет.

Итак, абсолютная погрешность показывает, насколько неизвестное экспериментатору истинное значение измеряемой величины может отличаться от измеренного значения.

Результат измерения с учетом абсолютной погрешности записывают так:

Относительная погрешность измерения

Значение абсолютной погрешности все же не позволяет в полной мере оценить качество наших измерений. Если, например, в результате измерений установлено, что длина стола с учетом абсолютной погрешности равна (100± 1) см, а толщина его крышки равна (2 ± 1) см, то качество измерений в первом случае выше (хотя граница абсолютной погрешности измерений в обоих случаях одинакова). Качество измерений характеризуется относительной погрешностью ε, равной отношению абсолютной погрешности ΔX к значению величины Xпр, получаемой в результате измерения:

.

При выполнении лабораторных работ выделяют следующие виды погрешностей: погрешности прямых измерений; погрешности косвенных измерений; случайные погрешности и систематические погрешности.

Погрешности прямых измерений

Прямое измерение – это такое измерение, при котором его результат определяется непосредственно в процессе считывания со шкалы прибора. В нашем первом примере с определением диаметра стержня речь шла как раз о таком измерении. Погрешность прямого измерения обозначается значком Δ. Если вы умеете правильно пользоваться измерительным прибором, то погрешность прямого измерения зависит только от его качества и равна сумме инструментальной погрешности прибора (Δ и) и погрешности отсчета (Δ 9). Таким образом: Δ = Δ и + Δ о

Инструментальная погрешность измерительного прибора (Δи) определяется на заводе-изготовителе. Абсолютные инструментальные погрешности измерительных приборов, чаще всего используемых для проведения лабораторных работ, приведены в таблице 1.

1 мм

0,2 мм

Линейка инструментальная (стальная)

0,1 мм

0,5 см

0,25 см

1 мл

Читайте также:  Как сделать грот из ракушек для аквариума

0,05 мм

0,005 мм

0,05 Н

0,01 с

3 мм. рт. ст.

1оС

0,5оС

0,05 А

0,15 В

Погрешность отсчета измерительного прибора (Δ о) связана с тем, что указатель прибора не всегда точно совпадает с делениями шкалы. В этом случае погрешность отсчета не превосходит половины цены деления шкалы.

Поэтому абсолютную погрешность прямого измерения находят по формуле ., где с – цена деления шкалы измерительного прибора.

Учитывать погрешность отсчета надо только в тех случаях, когда указатель прибора при измерении находится между нанесенными на шкалу прибора делениями. Не имеет смысла учитывать, погрешности отсчета у цифровых измерительных приборов.

Одновременно учитывать обе составляющие погрешности прямого измерения следует лишь в том случае, если их значения близки друг к другу. Любым из этих слагаемых можно пренебречь, если оно не превосходит одной трети или одной четверти второго. В этом состоит так называемое правило “ничтожных погрешностей“.

ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

Если результат эксперимента определяется на основе расчетов, то измерения называются косвенными. Например, при определении импульса тела p = mv, скорости равноускоренного движении V = V0 + at и т. п. Однако нам не удастся подсчитать погрешность полученного результата косвенных измерений так же просто, как при проведении прямых измерениях.

Предположим, что нам необходимо определить периметр и площадь прямоугольника. Произведя измерения линейкой, мы получим длины его сторон. Пусть длина одной стороны прямоугольника будет равна a, другой – b. Тогда периметр р прямоугольника будет равен p=2(a + b), а его площадь s = ab. Можно ли утверждать, что погрешности результатов расчета периметра прямоугольника и его площади будут одинаковыми? Вряд ли, ведь формулы, которыми пользовались при расчете разные: при нахождении периметра величины, полученные при измерении, мы складывали, а при подсчете его площади – перемножали.

При расчете погрешности результатов косвенных измерений нам придется учитывать, как выглядит формула, по которой производился расчет искомой величины. В теории погрешностей доказывается, как это можно сделать в общем виде. Мы же воспользуемся набором готовых формул для вычисления относительной погрешности результатов косвенных измерений. Формулы расчета относительных погрешностей для различных случаев приведены в таблице 3.

Как пользоваться этой таблицей?

Пусть, например, некоторая физическая величина х рассчитывается по формуле:

.

Значения k, m и p найдены прямыми измерениями во время проведения эксперимента. Их абсолютные погрешности соответственно равны . Подставляя полученные значения в формулу, получим приближенное значение .

Затем следует рассчитать относительную погрешность результата косвенных измерений – , воспользовавшись соответствующей формулой из таблицы 3.

На первый взгляд может показаться, что такой формулы в таблице нет. При более внимательном анализе ситуации заметим, что в нашем случае искомое значение находится как отношение двух величин k + m = А и р = В, поэтому нам можно воспользоваться формулой Х = А : В.

В нашем случае из таблицы 3 имеем для отношения А : В: или

Из этой же таблицы мы можем узнать, как рассчитать относительную погрешность суммы: . Следовательно, .

Теперь можно найти значение границе абсолютной погрешности результатов косвенных измерений, которая рассчитывается несколько иначе, чем при проведении прямых измерений. Для вычисления абсолютной погрешности результатов косвенных обычно измерений используют формулу для расчета относительной погрешности

.

Откуда ..

Окончательный результат косвенных измерений записывают в виде: .

Использование таблиц, построение графиков, сравнение

результатов экспериментов с учетом погрешностей.

ЗАПИСЬ ОКОНЧАТЕЛЬНЫХ РЕЗУЛЬТАТОВ

При использовании таблиц следует помнить о том, что погрешности приведенных в них значений имеют границу, равную ±0,5 в следующем разряде за последней значащей цифрой. Например, если в таблице указано, что плотность равна 2,7 103 кг/м3, то на самом деле ее значение – (2,7 ± 0,5) 103 кг/м3.

При построении графиков следует иметь в виду, что по результатам опытов мы получаем не точку, а прямоугольник со сторонами х и y (рис. 3). Поэтому при построении графиков необходимо проводить плавную линию так, чтобы по разные стороны от кривой оказалось примерно одинаковое число точек.

Погрешность измерения следует также учитывать, если вы хотите убедиться в достоверности измерения физической величины, действительное значение которой известно. В этом случае надо убедиться в принадлежности известного значения физической величины интервалу (см. рис.4.).

Если вы проверяете закон А = В, то результат проверки будет достоверен лишь при наличии общих точек у интервалов , то есть при частичном или полном перекрывании этих интервалов

После того, как будет вычислена граница абсолютной погрешности, ее значение обычно округляется до одной значащей цифры. Затем результат измерения записывается с числом десятичных знаков, не большим, чем их имеется в абсолютной погрешности. Например, запись V = 0,56032 ± 0,028 м/с плоха. Из такой записи следует, что мы как то сумели рассчитать численное значение скорости в тысячу раз точнее, чем позволяли нам приборы. (Действительно, ответ дан с точностью до 5-го знака после запятой, а погрешность имеется уже во втором знаке после запятой, что полностью дискредитирует как сам результат, так и человека его записавшего).

В приведенном примере следует округлить значение абсолютной погрешности до одной значащей цифры: ΔV = 0,03 м/с, а в приближенном значении скорости оставить два знака после запятой (столько же, сколько и в абсолютной погрешности): V = 0,56 м/с. Правильная запись ответа должна выглядеть так: V = 0,56 ± 0,03 м/с.

Погрешности при взвешивании возникают не только из-за погрешностей гирь, но еще и потому, что точность показания весов зависит от нагрузки на них.

График зависимости погрешности весов (ВТ2-200) от нагрузки приведен на рисунке 2,.

А погрешности гирь из набора Г4-210 для лабораторных работ приведены в таблице 2.

1 мг

2 мг

3 мг

4 мг

6 мг

8 мг

12 мг

20 мг

30 мг

40 мг

Таким образом, при использовании весов приходиться учитывать:

1) погрешность весов ;

2) погрешность гирь и разновесов ;

3) погрешность подбора гирь .

Погрешность подбора гирь аналогична погрешности отсчета и равна половине массы наименьшей гири, лежащей на весах (либо выводящей ее из равновесия). Поэтому при прямом измерении массы на весах: =++.

Пусть, например, взвешиваемое тело уравновешено на весах при помощи гирь, номинальные значения которых (указанные на гирях) равны 50 г, 20 г, 100 мг и выводятся из равновесия разновесом в 10 мг. Определим абсолютную погрешность взвешивания. По графику зависимости погрешности весов от нагрузки найдем погрешность весов . Она равна примерно 25 мг (для груза массой

70 г). Погрешность гирь найдем по таблице 2.

=30+20+1=51 мг. Погрешность подбора будет равна =10 мг/2=5 мг.

Поэтому граница погрешности при взвешивании будет равна: =25+51+5=81 мг. Следовательно, m = 70,100,081 г.

Инструментальные погрешности электроизмерительных приборов

Если при выполнении работы приходится пользоваться электроизмерительными приборами, не указанными в таблице 1, то инструментальную погрешность прибора все равно можно определить. Каждый электроизмерительный прибор в зависимости от качества изготовления имеет определенный класс точности. Значение класса точности наносится на его шкалу (изображается на шкале отдельно стоящим числом или числом в кружке), который позволяет определить погрешность этого прибора.

Если класс точности миллиамперметра 4, а предел измерения этого прибора равен 250 мА; то абсолютная инструментальная погрешность прибора составляет 4% от 250 мА, т. е. =10 мА.

Необходимо иметь ввиду, что во всех наших оценках границ погрешностей мы не учитывали, что существуют так называемые систематические погрешности. Эти погрешности возникают по разным причинам: из-за влияния измерительного прибора на процессы в измерительной установке; недостаточной корректности методики измерения; неправильных показаний прибора (например из-за первоначального смещения стрелки прибора от нулевого деления шкалы) и по другим причинам.

В школьном эксперименте устранить систематические погрешности довольно трудно из-за того, что ограничен выбор средств измерения, и они имеют не очень высокое качество. Поэтому при подготовке и проведении практических работ УЧИТЕЛЮ приходится продумывать методику проведения эксперимента и тщательно подбирать соответствующие приборы для сведения систематических погрешностей к минимуму. Поэтому будем считать систематические ошибки не существенными и учитывать их при расчете погрешности (во всяком случае пока) не будем.

Читайте также:  Как правильно убирать свеклу

Часто при проведении повторных измерений какой-либо величины получаются несколько различные результаты, отличающиеся друг от друга на величину большую, чем сумма погрешностей прибора и отсчета. Это вызвано действием случайных факторов, которые невозможно устранить в процессе эксперимента.

Допустим, что мы определяем дальность полета шарика, пущенного из баллистического пистолета в горизонтальном направлении. Даже при неизменных условиях поведения эксперимента шарик не будет попадать в одну и ту же точку поверхности стола. Это связано с тем, что шарик имеет не совсем правильную форму, так как на боек ударного механизма при движении в канале пистолета действует сила трения, изменяющаяся по величине, положение пистолета в пространстве не совсем жестко зафиксировано и т. д.

Такой «разброс» результатов наблюдается практически всегда при выполнении серии экспериментов. В этом случае за приближенное значение измеряемой величины берут среднее арифметическое.

Причем, чем больше будет проведено экспериментов, тем ближе будет среднее арифметическое к истинному значению измеряемой величины.

Но и среднее арифметическое, вообще говоря, не совпадает с истинным значением измеряемой величины. Как же найти границу интервала, в котором находится истинное значение? Эта граница называется границей случайной погрешности.

В теории расчета погрешностей показывается, что , где – значения физической величины в 1, 2. n опыте

Погрешность среднего арифметического значения определяемой величины.

Когда мы находим среднее арифметическое значение некоторой величины по результатам серии опытов, то естественно считать, что оно имеет меньшее отклонение от истинного значения, чем каждый отдельный опыт серии. Другими словами, погрешность среднего меньше, чем погрешность каждого опыта серии. В теории погрешностей доказывается, что граница погрешности среднего значения равна:

.

.

Из этой формулы следует, что граница случайной погрешности среднего значения стремится к нулю при увеличении числа опытов в серии. Это не значит, однако, что можно проводить абсолютно точные измерения – ведь приборы, с помощью которых мы получили результаты, также имеют погрешности. Поэтому погрешность среднего при бесконечном увеличении числа опытов стремится к погрешности прибора.

Очевидно, что число опытов имеет смысл выбрать таким, чтобы случайная погрешность среднего сравнялась с погрешностью прибора, либо стала меньше ее. Дальнейшее увеличение числа измерений теряет смысл, так как не увеличивает точность получаемого результата: , где – граница погрешности измерительного прибора.

Если нет возможности по каким-либо причинам провести достаточное количество опытов (т. е. не удается сделать погрешность среднего равной погрешности приборов), то результат должен быть взят в виде: , где – граница случайной погрешности среднего.

источник

1. Введение (измерения и погрешности измерений)

2. Случайные и систематические погрешности

3. Абсолютные и относительные погрешности

4. Погрешности средств измерений

5. Класс точности электроизмерительных приборов

7. Полная абсолютная погрешность прямых измерений

8. Запись окончательного результата прямого измерения

9. Погрешности косвенных измерений

1. Введение (измерения и погрешности измерений)

Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

Познакомимся с некоторыми характерными особенностями любых измерений.

Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

Измерения могут быть прямыми и косвенными.

Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину – линейкой, атмосферное давление- барометром.

Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

Рассмотрим пример измерения.

Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью – отклонением измеренного значения физической величины от ее истинного значения.

Перечислим некоторые из причин, приводящих к появлению погрешностей.

1. Ограниченная точность изготовления средств измерения.

2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения . ).

3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза. ).

4. Приближенный характер законов, используемых для нахождения измеряемых величин.

Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

2. Случайные и систематические погрешности

Погрешности, возникаемые при измерениях делятся на систематические и случайные.

Систематические погрешности- это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.

Причины возникновения систематических погрешностей:

1) несоответствие средств измерения эталону;

2) неправильная установка измерительных приборов (наклон, неуравновешенность);

3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;

4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).

Случайные погрешности- это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.

3. Абсолютные и относительные погрешности

Для количественной оценки качества измерений вводят понятия абсолютной и относительной погрешностей измерений.

Как уже говорилось, любое измерение дает лишь приближенное значение физической величины, однако можно указать интервал, который содержит ее истинное значение:

Величина D А называется абсолютной погрешностью измерения величины А. Абсолютная погрешность выражается в единицах измеряемой величины. Абсолютная погрешность равна модулю максимально возможного отклонения значения физической величины от измеренного значения. Апр– значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений.

Но для оценки качества измерения необходимо определить относительную погрешность e . e = D А/Апр или e= (D А/Апр)*100%.

Если при измерении получена относительная погрешность более 10%, то говорят, что произведена лишь оценка измеряемой величины. В лабораториях физического практикума рекомендуется проводить измерения с относительной погрешностью до 10%. В научных лабораториях некоторые точные измерения (например определение длины световой волны), выполняются с точностью миллионных долей процента.

4. Погрешности средств измерений

Эти погрешности называют еще инструментальными или приборными. Они обусловлены конструкцией измерительного прибора, точностью его изготовления и градуировки. Обычно довольствуются о допустимых инструментальных погрешностях, сообщаемых заводом изготовителем в паспорте к данному прибору. Эти допустимые погрешности регламентируются ГОСТами. Это относится и к эталонам. Обычно абсолютную инструментальную погрешность обозначают D иА.

Если сведений о допустимой погрешности не имеется (например у линейки), то в качестве этой погрешности можно принять половину цены деления.

При взвешивании абсолютная инструментальная погрешность складывается из инструментальных погрешностей весов и гирь. В таблице приведены допустимые погрешности наиболее часто

встречающихся в школьном эксперименте средств измерения.

источник

Adblock
detector