Меню

Физические свойства лития натрия калия

Литий имеет наиболее высокую температуру плавления и кипения, но наиболее низкую плотность среди щелочных металлов; он характеризуется большой скрытой теплотой испарения и обладает наибольшей среди металлов удельной теплоемкостью, равной 0,941 кал/г- град при 20º С. Электропроводность лития составляет около 20% от электропроводности серебра.

Стойкость лития на воздухе выше стойкости других щелочных металлов. В сухом воздухе поверхность лития долгое время сохраняет металлический блеск, с увеличением влажности наблюдается возрастание скорости коррозии металла. При влажности воздуха 100% продукты коррозии состоят из 33,55% Li2СO3 и 66,09% LiOH, остальное, по-видимому, нитрид лития. При влажности воздуха менее 80% продукты коррозии в основном состоят из нитрида лития. При нагревании до температуры, близкой к температуре плавления, литий может воспламеняться на воздухе. Присутствие в литии примесей и повышение влажности воздуха понижают температуру его воспламенения. Температура воспламенения технического лития (правильнее, продуктов его коррозии) 200°С, а рафинированного металла 640°С.

При нагревании лития в атмосфере водорода образуется гидрид лития LiH. Образование нитрида лития Li3N происходит уже при комнатной температуре и усиливается при 450°С.

При сгорании лития в кислороде образуется белая окись лития Li2O, что отличает его от других щелочных металлов, которые, сгорая в кислороде, образуют перекиси.

Литий энергично соединяется с фтором и хлором при комнатной температуре, а также реагирует со многими окислами и сульфидами, образуя нерастворимые соединения, которые всплывают на поверхность расплавленного металла. Подобно другим щелочным металлам, литий разлагает воду, однако значительно менее энергично, чем натрий и калий.

Разбавленные кислоты энергично растворяют литий. Концентрированная азотная кислота активно окисляет литий, который при этом плавится и воспламеняется. Концентрированная серная кислота при комнатной температуре медленно растворяет чистый литий.

С алюминием, висмутом, магнием, оловом, свинцом, серебром, сурьмой, цинком и кремнием литий образует интерметаллиды. Медь и магний образуют с ним твердые растворы. Часть названных выше металлов активно используют при производстве различного металлопроката, которой всегда можно приобрести в ООО “Ситистрой” здесь http://city-met.ru/ по очень выгодным ценам.

Известны два изотопа лития — Li6 и Li7, относительная распространенность которых равна соответственно 7,3 и 92,7%.

Натрий является исключительно активным и реакционноспособным элементом. При взаимодействии с сухим воздухом или кислородом при температуре ниже 160°С чистый натрий в основном образует окись натрия Na2O. При сгорании натрия образуется перекись Na2O2. В отличие от калия натрий можно нагревать в воздухе до температуры его плавления. При температурах, близких к температуре плавления, натрий медленно поглощает водород и более энергично — при 200—400°С. При 300°С один объем натрия поглощает до 126 объемов водорода. При 360°С натрий соединяется с водородом, образуя гидрид NaH, который разлагается в вакууме при 400°С.

С азотом натрий не реагирует до 400°С. При смешении и растирании натрия с серой образуется сульфид натрия Na2S. Реакция образования сульфида натрия протекает со взрывом. С углеродом при температурах 800—900°С образуется карбид Na2C2. Галогены, особенно фтор, энергично соединяются с натрием. Известно шесть естественных изотопов натрия, из которых только Na23 не радиоактивен.

Окисление калия на воздухе протекает энергично, при этом металл плавится и воспламеняется, образуя при недостатке кислорода окись К2О, а при его избытке перекись калия КгO2.

Калий — также очень активный элемент. Сухой кислород не взаимодействует с калием даже при нагревании.

С водородом при низких температурах калий практически не взаимодействует, поэтому его можно расплавить в атмосфере водорода. Значительное поглощение калием водорода начинается около 200°С. При 300— 400°С один объем калия поглощает 125 объемов водорода, образуя гидрид калия КН. Гидрид калия — еще менее устойчивое соединение, чем гидрид натрия. При 411°С давление диссоциации его достигает 760 мм рт. ст.

Калий и азот не взаимодействуют друг с другом даже под давлением и при нагревании до высоких температур, поэтому азот здесь может использоваться в качестве защитной среды. Калий энергично взаимодействует с галогенами, особенно со фтором. При температурах выше 200°С графит поглощает до 4% К; состав продукта, полученного при 300°С, соответствует формуле КС8.

источник

Важным химическим продуктом с глубокой древности являлась зола. Мылкий раствор, образующийся при кипячении золы с водой (щёлок), был первым моющим средством, созданным человеком. В Средние века люди научились выделять из золы соединения, которые и делали ее раствор мылким, — соду и поташ (карбонаты натрия и калия). Долгое время названия этих двух солей означали лишь разные виды золы: поташом или кали называли золу, остающуюся после сгорания древесины, соломы, камыша и папоротника (эта зола богата калийными солями), а содой или натроном – золу других травянистых растений, в которых преобладали соли натрия.

На Руси производство поташа существовало уже в XI в. Золу, образующуюся при сжигании соломы или древесины, обрабатывали водой, а полученный раствор после фильтрования выпаривали. Сухой остаток кроме карбоната калия содержал также и другие примеси в виде калийных солей.

В отличие от поташа, сода встречается в природе, например в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при изготовлении красящих веществ и при варке пищи. Плиний Старший писал, что в дельте Нила соду выделяли из речной воды. Сода, получаемая из растительной золы, также содержала большое количество других солей. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или черный цвет.

Получение соды в дельте Нила. Из книги Г.Агриколы «О горном деле и металлургии»

Химическое различие между содой и поташом окончательно установил в 1758 г. немецкий химик А. С. Маргграф. А в 1807 г. Г. Дэви провёл электролиз расплавов щелочей – гидроксида натрия и гидроксида калия, выделив металлические натрий и калий.

В XIX в. были открыты литий, цезий и рубидий. Так, в 1860 – 1861 г. немецкие ученые Р. В. Бунзен и Г. Р. Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них два новых элемента. По цвету наиболее сильных линий спектра один из них назвали рубидием (от лат. rubidus – «темно – красный»), а другой – цезием (от лат. caesius – «небесно-голубой»).

Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Натрий и калий принадлежат к распространенным элементам: содержание каждого из них в земной коре равно приблизительно 2%. Оба металла входят в состав различных минералов и горных пород силикатного типа. Хлорид натрия содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида или двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение встречаются редко. Наиболее важными из них являются соликамские месторождения Пермского края, стассфуртские в Германии и эльзасские – во Франции. Залежи натриевой селитры находятся в Чили. В воде многих озер содержится сода. Наконец, огромные количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль и в зимние месяцы осаждается толстым слоем на дне.

Добыча соли

Среди соединений натрия важная роль принадлежит карбонату, или соде. Безводный средний карбонат натрия Na2CO3 называют кальцинированной содой, десятиводный кристаллогидрат Na2CO3∙10H2O – стиральной содой, а гидрокарбонат NaHCO3 – питьевой или пищевой содой.

Растворы среднего карбоната имеют сильнощелочную реакцию среды, их используют при стирке белья и при обработке шерсти. Кроме того, кальцинированная сода находит широкое применение в производстве мыла, стекла, сульфита натрия, органических красителей. Растворы гидрокарбоната имеют слабощелочную реакцию среды, поэтому питьевую соду используют в медицине, а также при приготовлении пищи.

Значительно меньше, чем натрий и калий, распространены литий, рубидий и цезий. Чаще других встречается литий, но содержащие его минералы редко образуют большие скопления. Рубидий и цезий содержатся в небольших количествах в некоторых литиевых минералах.

Все известные изотопы франция радиоактивны и быстро распадаются (период полураспада изотопа 223 Fr составляет 21,8 мин.). Первым был открыт изотоп 223 Fr французской исследовательницей М.Пере в 1939 г.В честь своей родины она назвала его францием. Он образуется при распаде актиния и в ничтожном количестве встречается в природе. В настоящее время небольшие количества франция получают искусственно.

Во внешнем электронном слое атомы щелочных металлов имеют по одному электрону. Во втором внешнем электронном слое у атома лития содержатся два электрона, а у атомов остальных щелочных металлов – по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы этих элементов довольно легко отдают этот электрон. Легкость отдачи внешних электронов характеризует рассматриваемые элементы как наиболее типичные представители металлов: металлические свойства выражены у щелочных металлов особенно резко.

  1. Взаимодействие щелочных металлов с неметаллами

а) взаимодействие с кислородом

Обратите внимание, что только литий окисляется кислородом до нормального оксида:

Основным продуктом окисления натрия является пероксид:

а калий, рубидий и цезий сгорают в кислороде с образованием супероксидов (надпероксидов):

б) взаимодействие с галогенами (продукты взаимодействия галогениды):

в) взаимодействие с серой и фосфором (продукты взаимодействия сульфиды и фосфиды):

г) взаимодействие с водородом (продукты взаимодействия гидриды):

Гидриды щелочных металлов разлагаются водой с образованием щелочи и свободного водорода:

д) взаимодействие с азотом и углеродом

Эти реакции наиболее характерны для лития, который с азотом взаимодействует даже при обычной температуре:

  1. Взаимодействие щелочных металлов со сложными веществами

а) взаимодействие с водой

Возможность взаимодействия щелочных металлов с водой обусловлена тем, что они находятся в начале ряда напряжений металлов, т.е. обладают очень высокой восстановительной активностью и могут окисляться даже ионами водорода из воды.

Взаимодействие натрия с водой

В результате реакций образуются растворы щелочей и выделяется водород, который иногда самовоспламеняется:

б) взаимодействие с разбавленными кислотами

Концентрированную серную кислоту щелочные металлы восстанавливают до сероводорода:

Соли щелочных металлов окрашивают пламя горелки в различные цвета:

Это свойство используется для качественного анализа, т.е. для обнаружения этих катионов.

Цвет пламени ионов щелочных металлов

В промышленности натрий получают электролизом расплава смеси хлоридов натрия и кальция (она плавится при более низкой температуре, чем чистый хлорид натрия). Интересно, что первым из расплава выделяется не кальций, а более активный натрий, так как ион Na + в расплаве легче, чем Са 2+ , принимает электроны. Процесс проводят в стальных электролизёрах при 580 ̊ С. Образующийся жидкий натрий всплывает на поверхность расплава и собирается в специальный приёмник.

Схема электролиза для получения натрия

Ежегодно в мире производится около 200 тыс. тонн металлического натрия, который применяется на атомных электростанциях и в авиадвигателях в качестве теплоносителя, в металлургии – как восстановитель, в лабораторной практике – для абсолютирования (обезвоживания) растворителей.

Литий, как и натрий получают электролизом расплавов, а остальные щелочные металлы вытесняют из расплавленных солей металлическим натрием и кальцием. Например, натрий при 850 ̊ С легко вытесняет более активный калий из расплава его хлорида: KCl + Na → NaCl + K↑

Читайте также:  Шарлотка при какой температуре выпекается

Это объясняется тем, что калий (tкип = 762 ̊ С), более летучий, чем натрий (tкип = 883 ̊ С), испаряется, и в соответствии с принципом Ле-Шателье равновесие реакции смещается вправо. Аналогично из хлорида цезия можно получить цезий: Ca + 2CsCl = 2Cs↑ + CaCl2

Натрий представляет собой серебристо-белый металл. Он настолько мягок, что легко режется ножом. Вследствие легкой окисляемости на воздухе его хранят под слоем керосина.

В организме человека натрий в виде его растворимых солей, содержится в основном во внеклеточных жидкостях – плазме крови, лимфе, пищеварительных соках. Осмотическое давление плазмы крови поддерживается на необходимом уровне прежде всего за счет хлорида натрия.

Значительная потеря ионов натрия (они выводятся из организма с мочой и потом) неблагоприятно сказываются на здоровье человека. Поэтому врачи рекомендуют людям есть больше соленого. Однако и избыточное содержание их в пище вызывает негативную реакцию организма, например повышение артериального давления.

Едкие щелочи (NaOH и KOH)

Гидроксиды щелочных металлов называют едкими щелочами. Они представляют собой белые кристаллические вещества, устойчивые к нагреванию, хорошо растворимые в воде (за исключением LiOH), а также в спирте.

Гидроксид калия

Гидроксид натрия – его называют также едким натром или каустической содой (от греч. «каустикос» — «жгучий», «едкий») – впервые был обнаружен в соде в 1736 г. французским химиком Анри Луи Дюамелем Дю Монсо. Это вещество образуется при гидролизе соды: Na2CO3 + H2O ⇄ NaHCO3 + NaOH. В XVIII в. едкий натр получали, действуя на сульфат натрия оксидом свинца (II): Na2SO4 + PbO + H2O = PbSO4↓ + 2NaOH

Другим способом получения едкого натра служило взаимодействие соды с известью Ca(OH)2 (каустификация соды): Ca(OH)2 + Na2CO3 ⇄ CaCO3 + 2NaOH.

В наше время едкие щелочи получают электролизом растворов солей, например хлоридов. При этом наряду с щелочью образуются другие важные вещества – водород и хлор.

Гидроксиды натрия и калия применяют для очистки нефти и масел, в производстве бумаги, моющих средств, искусственных волокон. Благодаря способности активно поглощать влагу из воздуха (гигроскопичности) NaOH и KOH используются в лабораториях как осушители.

Перекись(или пероксид) натрия образуется при сжигании натрия на воздухе или в кислороде. В заводских условиях перекись натрия готовят нагреванием расплавленного натрия в токе воздуха, освобожденного от СО2. Получающийся продукт имеет слабо-желтоватую окраску, обусловленную примесью соединения NaO2, называемого надперекисью натрия.

Перекись натрия – очень сильный окислитель. Многие органические вещества при соприкосновении с ней воспламеняются.

При осторожном растворении перекиси натрия в холодной воде получается раствор, содержащий гидроксид натрия и перекись водорода. Если нагревать полученный раствор, то вследствие разложения перекиси водорода из него выделяется кислород.

При действии на перекись натрия разбавленных кислот также получается перекись водорода, например: Na2O2 + H2SO4 = H2O2 + Na2SO4

Перекись натрия применяется для отбелки тканей, шерсти, шелка и т.п. Важное значение имеет реакция взаимодействия перекиси натрия с углекислым газом:

На этой реакции основано применение перекиси натрия для регенерации воздуха в изолированных помещениях.

Он может быть получен при пропускании над натрием, нагретым не выше 180̊ С, умеренного количества кислорода или нагреванием перекиси натрия с металлическим натрием: Na2O2 + 2Na = 2Na2O

Оксид натрия бурно реагирует с водой с образованием гидроксида натрия и выделением большого количества теплоты:

По внешнему виду, а также по физическим и химическим свойствам калий очень похож на натрий, но обладает еще большей активностью. Подобно натрию, он имеет серебристо- белый цвет, быстро окисляется на воздухе и бурно реагирует с водой с выделением водорода.

Соли калия очень сходны с солями натрия, но обычно выделяются из растворов без кристаллизационной воды.

Калий принадлежит к числу элементов, необходимых в значительном количестве для питания растений. Хотя в почве находится довольно много солей калия, но и уносится его с некоторыми культурными растениями также очень много. Особенно много калия уносят лен и табак.

Калий отлагается в растениях главным образом в стеблях, поэтому удобрение земли навозом, содержащим солому, отчасти пополняет убыль калия. Но так как стебли перечисленных выше растений используются для промышленных целей, то в конце концов большая часть калия уходит из почвы, и для пополнения его убыли необходимо вносить калийные удобрения.

Источником получения калийных удобрений служат естественные отложения калийных солей. В России такие отложения находятся в районе Соликамска. Пласты соли состоящие главным образом из минералов карналлита KCl∙MgCl2∙6H2O и сильвинита KCl∙NaCl, залегают на большой площади между верховьями Камы и предгорьями Урала.

Соликамская шахта по добыче соли

Как и натрий, калий содержится во всех тканях организма человека. Но, в отличие от натрия, калий в преобладающем количестве находится внутри клеток. Ион калия играет важную роль в некоторых физиологических и биохимических процессах. Определенная концентрация калия в крови необходима для нормальной работы сердца. В организм калий поступает главным образом с растительной пищей; суточная потребность человека в нем составляет 2-3 г.

В 1817 г. в природных силикатах ученик Й.Я.Берцелиуса шведский химик Август Арфведсон обнаружил новый элемент, который назвал литием (от греч. «литос» — «камень»). В 1818 г. Г.Дэви получил литий в свободном виде электролизом расплава гидроксида.

В свободном состоянии литий – серебристо-белый металл, мягкий, хотя и жёстче остальных щелочных металлов, а также не такой легкоплавкий (tпл = 181̊ С). Литий настолько лёгок, что не тонет даже в керосине.

Литий

По сравнению с другими щелочными металлами литий обладает рядом особенностей. Так, при сгорании на воздухе он дает оксид Li2O, напрямую взаимодействует с азотом, образуя нитрид Li3N, и с углеродом, образуя карбид Li2C2. Некоторые соли лития (карбонат, фторид) малорастворимы в воде, а карбонат и гидроксид лития разлагаются при сильном нагреве с образованием оксида. Все эти свойства говорят о том, что химия лития близка химии магния.

Добро пожаловать на сайт! Здесь вы найдете самую полную информацию об истории химии и ее развитии как науки, а также интересные статьи о всех химических элементах известных на сегодняшний день и о соединениях, которые они образуют.

источник

Элементы IA-подгруппы (за исключением лития Li) называются щелочными металлами. Это название они получили из-за того, что гидроксиды некоторых из них издавна известны как щелочи. На внешнем электронном уровне их атомов имеется по одному электрону (s1), сильно удаленному от ядра, благодаря чему для них характерны низкие потенциалы ионизации и сильные восстановительные свойства.

Наиболее чувствительным методом качественного определения этих металлов является фотометрия. При внесении в пламя горелки соли щелочного металла она разлагается, и пары освободившегося металла окрашивают пламя в характерный для каждого металла цвет:

Свойства металлов и некоторые физические константы представлены в табл. 1.1.

Свойства элементов 1А-подгруппы

Металлический радиус атома, А

Наличие в земной коре, % (мае.)

Распространение в природе и получение. Литий достаточно широко распространен в земной коре (0,0065%). Наибольшую ценность имеют минералы сподумен LiAl(Si03)2, амблигопит LiAl(P04)F и лепидолит Li2Al2(Si03)3(F, ОН)2.

Получают литий вакуум-термическим восстановлением сподумена или оксида лития, используя в качестве восстановителя кремний или алюминий, а также электролизом расплава эвтектической смеси LiCl — КС1. Особо чистый литий получают электролизом расплава эвтектической смеси хлорида и бромида лития. Его хранят под слоем вазелина или парафина в запаянных сосудах.

Натрий — один из наиболее распространенных элементов на Земле (2,4%). Он обнаружен в атмосфере Солнца и в межзвездном пространстве. Огромное количество солей натрия находится в гидросфере. Важнейшие минералы натрия: NaCl (каменная соль, галит), Na2SO410FI2O (.мирабилит, глауберова соль), (кри

олит), Na2B4O710H2O (бура) и др. В сочетании с другими элементами он входит в состав многих природных силикатов и алюмосиликатов. Соединения натрия содержатся в растительных и животных организмах.

Получают натрий электролизом расплавов NaCl или NaOH. Натрий хранят под керосином или в запаянных сосудах.

Калий, как и натрий, относится к довольно распространенным элементам (2,6%). Наиболее важными минералами являются: сильвин КС1, сильвинит NaCl-KCl, карналлит KCl-MgCl2-6II20, каинит KClMgS04-3H20.

Рубидий и цезий содержатся в минералах калия.

В технике калий получают натрий-термическим методом из расплавленного гидроксида или хлорида, рубидий и цезий – методами металлотермии и термическим разложением соединений. Калий и его аналоги хранят в запаянных сосудах. Калий, кроме того, можно хранить в керосине.

Франций радиоактивен, стабильных изотопов не имеет. Содержание его в продуктах радиоактивного распада урана ничтожно мало (4 • 10 28 г на 1 г природного урана). Его получают искусственно. Наиболее долгоживущий изотоп 212 Fr (Г1/2 = 20 мин) образуется при облучении урана протонами. Свойства его изучены недостаточно.

Физические и химические свойства. В виде простых веществ металлы IA-подгруппы — блестящие серебристо-белые (за исключением золотисто-желтого цезия) вещества. Основные физические свойства этих металлов приведены в табл. 1.1. Как видно из приведенных данных, это довольно легкие металлы (Li, Na и К легче воды), температуры плавления и кипения невысокие. Эти металлы очень мягкие и легко режутся ножом. Характерно, что от лития к натрию и далее к калию значения большинства констант меняются довольно резко.

Взаимодействие с простыми веществами представлено на схеме:

Щелочные металлы обладают высокой химической активностью, которая возрастает от лития к цезию. На воздухе окисляются: литий образует оксид Li20 (темно-серый налет) натрий пероксид Na22, а калий, рубидий и цезий — надпероксиды Ме02 и озониды Ме03 (рыхлые продукты взаимодействия).

Восстановительная способность этих металлов настолько велика, что они восстанавливают даже атомы водорода до Н :

В атмосфере галогенов (фтора и хлора, а также в парах брома и иода) они самовоспламеняются при обычных условиях, цезий и франций — со взрывом. При нагревании непосредственно соединяются с серой, углеродом, водородом и другими неметаллами, образуя бинарные соединения: сульфиды Me2S, нитриды Me3N, карбиды (ацетилениды) Мс2С2 и гидриды МеН. При сплавлении натрия с серой образуются персульфиды типа Na2S2, Na2S3, Na2S4 и Na2S5. Сульфид, селенид, теллурид натрия образуются при непосредственном взаимодействии компонентов в вакууме.

С большинством металлов образуют интерметаллические соединения, с магнием, алюминием, цинком и с некоторыми другими – ограниченные твердые растворы, а с щелочными металлами – эвтектические смеси. Эвтектический сплав 24% Na и 76% К в обычных условиях представляет собой жидкость (?пл = -12,6°С).

Литий при температуре выше 200°С загорается.

По химической активности литий уступает некоторым металлам, хотя значение его стандартного электродного потенциала наиболее отрицательное (?°298 = -3,05 В). Это обусловлено большой энтальпией гидратации иона Li + .

Отношение к воде и кислотам. Взаимодействие с водой и кислотами представлено на схеме:

Все щелочные металлы энергично разлагают воду, выделяя из нее водород:

Взаимодействие калия с водой сопровождается самовоспламенением выделяющегося водорода, а взаимодействие Rb и Cs — даже взрывом.

Еще легче они взаимодействует с кислотами, вытесняя водород из разбавленных кислот (кроме азотной). Концентрированную серную и разбавленную азотную кислоты они восстанавливают до H2S и NII3 (NH4N03) соответственно.

Свойства соединений металлов подгруппы IA. Соединения с кислородом. Пероксиды. В ряду Li —> Na —> К —> Rb —» Cs возрастает тенденция к образованию иероксидных соединений (см. выше).

Читайте также:  Разрешение на работу в сша для русских

Для лития известен пероксид Li22 , а для натрия — озонид, но устойчивость их существенно ниже, чем для К, Rb и Cs. Все пероксидные соединения легко разлагаются водой и являются очень сильными окислителями:

Оксиды Э20. Оксид лития Li20 и натрия Na20 — белые твердые вещества. Li20 получается взаимодействием простых веществ. Оксиды Na20 и К20, желтый Rb20 и оранжевый Cs20 получают косвенным путем — восстанавливая пероксиды металлами:

В ряду Li20 -> Na20 -> К20 -> Rb20 -> Cs20 активность возрастает. Это типичные основные оксиды. С кислотами, кислотными и амфотерными оксидами образуют соли:

Взаимодействуют с водой, образуя гидроксиды:

Гидроксиды МеОН — бесцветные гигроскопические вещества, хорошо растворимые в воде с выделением большого количества тепла. В водных растворах МеОН являются самыми сильными основаниями — щелочами (NaOH, КОН, RbOH, CsOH). Из них наибольшее значение в технике имеют гидроксиды натрия (едкий натр или каустическая сода) NaOIi и калия (едкое кали) КОП. Их получают электролизом водных растворов NaCl и КС1.

LiOH по растворимости и силе уступает остальным гидроксидам. При накаливании, в отличие от гидроксидов других щелочных металлов, LiOH разлагается:

Гидроксиды щелочных металлов, как и оксиды, энергично растворяются в кислотах, образуя соответствующие соли:

Растворы щелочей разъедают стекло, образуя силикаты Me2Si03, а также поверхность алюминия с образованием алюминатов Ме[Л1(ОН)4] и водорода Н2:

Гидроксид натрия NaOH — белые кристаллы, легко поглощают влагу и углекислый газ из воздуха (образуется гидрокарбонат NaHCQ3):

Большинство солей лития и щелочных металлов хорошо растворимы в воде. Трудно растворимыми являются LiF, Li3P04, и гидрокарбонат NaHC03, перхлораты КСЮ4, RbCl04, CsCl04, а также некоторые комплексные соли: гексанитритокобальтат(Ш) натрия Na-)fCo(NO >),-l и гексахлороплатинаты(У1) калия и рубидия K2[PtCl6], Rb2[PtCl6],

Соединения с неметаллами представляют собою бинарные соединения — бесцветные кристаллические вещества. Они являются солями или соленодобными соединениями. Соли слабых кислот в водных растворах гидролизуются:

Солеподобные соединения (нитриды, карбиды, гидриды и др.) разлагаются водой:

Применение. Важнейшей областью применения лития является атомная энергетика. Его используют как источник получения трития, а также в качестве теплоносителя в атомных реакторах:

Литий придает сплавам ряд ценных физико-химических свойств. Например, у сплавов алюминия с содержанием до 1% Li повышаются механическая прочность и коррозионная стойкость, введение 2% Li в техническую медь значительно увеличивает ее электрическую проводимость и т.д. Гидроксид лития LiOH применяется в качестве электролита в аккумуляторах. Минералы и искусственные соединения лития (алюминат, гитанат, карбонат, силикат, молибдат и др.) применяются при производстве эмалей, специальных стекол, пропускающих ультрафиолетовые лучи, и др.

Металлоргаиические соединения лития широко применяются в органическом синтезе.

Натрий используется в качестве теплоносителя в ядерных энергетических установках, в металлотермии, а также в клапанах авиационных двигателей, в химических производствах, где требуется равномерный обогрев в пределах 450—650°С. Металлический натрий и его жидкий сплав с калием используются в органическом синтезе. Амальгама натрия часто применяется как восстановитель. Гидроксид натрия используется при производстве мыла, красок, целлюлозы и др., входит в состав растворителей неактивных металлов, а также элементарных и сложных полупроводниковых материалов.

Хлорид натрия является основой для целого ряда важнейших производств, таких как производство натрия, едкого натра, соды, хлора и др.

Карбонаты натрия применяются во многих отраслях промышленности: химической, мыловаренной, бумажной, текстильной, пищевой и др.

Около 90% добываемых солей калия (в виде KN03, КС1, K2S04 и др.) используются в качестве удобрений, при производстве стекол, мыла и др. Соединения калия, рубидия, цезия и франция используются в медицине.

Токсичность элементов. Практически опасность представляют лишь щелочные металлы и их гидроксиды, вызывая ожоги кожи. Особенно опасно попадание даже самых малых количеств щелочей в глаза.

источник

Na-2,64% (по массе), K-2,5% (по массе), Li, Rb, Cs – значительно меньше, Fr- искусственно полученный элемент

NaCl – поваренная соль (каменная соль), галит

Na2SO4 • 10H2O – глауберова соль (мирабилит)

KCl • MgCl2 • 6H2O – карналлит

Свойства щелочных металлов

С увеличением порядкового номера атомный радиус увеличивается, способность отдавать валентные электроны увеличивается и восстановительная активность увеличивается:

Низкие температуры плавления, малые значения плотностей, мягкие, режутся ножом.

Типичные металлы, очень сильные восстановители. В соединениях проявляют единственную степень окисления +1. Восстановительная способность увеличивается с ростом атомной массы. Все соединения имеют ионный характер, почти все растворимы в воде. Гидроксиды R–OH – щёлочи, сила их возрастает с увеличением атомной массы металла.

Воспламеняются на воздухе при умеренном нагревании. С водородом образуют солеобразные гидриды. Продукты сгорания чаще всего пероксиды.

Восстановительная способность увеличивается в ряду Li–Na–K–Rb–Cs

K + O2 → KO2 (надпероксид калия)

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

4. В реакциях с другими неметаллами образуются бинарные соединения:

2Li + Cl2 → 2LiCl (галогениды)

5. Качественная реакция на катионы щелочных металлов – окрашивание пламени в следующие цвета:

K + , Rb + и Cs + – фиолетовый

Т.к. щелочные металлы – это самые сильные восстановители, их можно восстановить из соединений только при электролизе расплавов солей:
2NaCl=2Na+Cl2

Применение щелочных металлов

Литий – подшипниковые сплавы, катализатор

Натрий – газоразрядные лампы, теплоноситель в ядерных реакторах

Рубидий – научно-исследовательские работы

Оксиды, пероксиды и надпероксиды щелочных металлов

Окислением металла получается только оксид лития

(в остальных случаях получаются пероксиды или надпероксиды).

Все оксиды (кроме Li2O) получают при нагревании смеси пероксида (или надпероксида) с избытком металла:

Реагируют с водой, кислотными оксидами и кислотами:

источник

В 1817 г. шведский химик и минералог Август Арфведсон, анализируя природный минерал петалит, установил, что в нем содержится “огнепостоянная щелочь до сих пор неизвестной природы”. Позднее он нашел аналогичные соединения в составе других минералов. Арфведсон предположил, что это соединения нового элемента и дал ему название литий (от греческого liqoz – камень).
Металлический литий был выделен в 1818 году английский химиком Гемфри Дэви электролизом расплава гидроксида лития.

Природный литий состоит из двух стабильных изотопов – 6 Li (7,42%) и 7 Li (92,58%).
Литий – сравнительно мало распространенный элемент (массовая доля в земной коре 1,8*10 -3 %, 18 г/тонну). Кроме петалита LiAl[Si4O10], основными минералами лития являются слюда, лепидолит – KLi1,5Al1,5[Si3AlO10](F,OH)2 и пироксен сподумен – LiAl[Si2O6].
В настоящее время для получения металлического лития его природные минералы или обрабатывают серной кислотой, или спекают с CaO или CaCO3, а затем выщелачивают водой. Получают растворы сульфата или гидроксида лития, из которых осаждают плохо растворимый карбонат Li2CO3, который затем переводят в хлорид LiCl. Электролизом расплава хлорида лития в смеси с хлоридом калия или бария получают металлический литий.

Простое вещество литий – мягкий щелочной металл серебристо-белого цвета. Из всех щелочных металлов он самый твердый, высокоплавкий (Ткип=180,5 и Тпл=1340° С). Это самый легкий металл (плотность 0,533 г/см 3 ), он плавает не только в воде, но и в керосине. Литий и его соли окрашивают пламя в карминно-красный цвет.

Литий проявляет типичные свойства щелочных металлов, взаимодействуя с водой, кислородом, другими неметаллами. Хранить его приходится под слоем под слоем минерального масла, придавливая сверху, чтобы не всплывал.
В соответствии с положением в ПСХЭ, литий наименее активный щелочной металл. Так в реакции с кислородом он образует в основном оксид лития, а не пероксиды как другие металлы. Подобно натрию литий растворяется в жидком аммиаке, образуя синий раствор с металлической проводимостью. Растворенный литий постепенно реагирует с аммиаком:
Литий отличается повышенной активностью при взаимодействии с азотом, образуя с ним уже при обычной температуре нитрид Li3N.
По некоторым свойствам литий и его соединения напоминают соединения магния (диагональное сходство в таблице Менделеева).

Оксид лития, Li2O – белое кристаллическое вещество, основный оксид, с водой образует гидроксид

Гидроксид лития – LiOH – белый порошок, обычно моногидрат, LiOH*H2O, сильное основание

Соли лития – бесцветные кристаллические вещества, гигроскопичны, образуют кристаллогидраты состава LiX*3H2O. Карбонат и фторид лития подобно аналогичным солям магния малорастворимы. Карбонат и нитрат лития при нагревании разлагаются, образуя оксид лития:
Li2CO3 = Li2O + CO2; 4LiNO3 = 2Li2O + 4NO2 + O2

Пероксид лития – Li2O2 – белое кристаллическое вещество, получают реакцией гидроксида лития с пероксидом водорода: 2LiOH + H2O2 = Li2O2 + 2H2O
Используют в космических аппаратах и подводных лодках для получения кислорода:
2Li2O2 + 2CO2 = 2Li2CO3 +O2

Гидрид лития LiH получают взаимодействием расплавленного лития с водородом. Бесцветные кристаллы, реагирует с водой и кислотами с выделением водорода. Источник водорода в полевых условиях.

Металлический литий – высокопрочные и сверхлегкие сплавы с магнием и алюминием для авиационной и космической техники. Легирующая добавка в металлургии (связывает азот, кремний, углерод). Теплоноситель (расплав) в ядерных реакторах.

Из лития изготовляют аноды химических источников тока и гальванических элементов с твёрдым электролитом.

Соединения: специальные стекла, глазури, эмали, керамика. Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров
LiOH как добавка в электролит щелочных аккумуляторов. Карбонат лития – добавка в расплав при производстве алюминия: снижает температуру плавления электролита, увеличивает силу тока, уменьшает нежелательное выделение фтора.

Металлоорганические соединения лития (например бутиллитий LiС4Н9) – широко применяются в промышленном и лабораторном органическом синтезе и как катализаторы полимеризации.

Дейтерид лития-6: как источник дейтерия и трития в термоядерном оружии (водородная бомба). См. Ядерные реакции дейтерида лития. (анимированные модели).

Содержание лития в организме человека составляет около 70 мг. В течение суток в организм взрослого человека поступает около 100 мкг лития. Литий способствует высвобождению магния из клеточных «депо» и тормозит передачу нервного импульса, ингибируя проводимость нервной системы. Соли лития применяются психотропные лекарственные средства, оказывая успокаивающий эффект при лечении шизофрении и депрессии. Однако передозировка может привести к тяжелым осложнениям и летальному исходу.

Нурмаганбетов Т.
ТюмГУ, 582 группа, 2011 г.

источник

Щелочные металлы

Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.

Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:

Читайте также:  Как готовить летний опенок

Поваренная соль, каменная соль, галитNaCl — хлорид натрия

Сильвин KCl — хлорид калия

Сильвинит NaCl · KCl

Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия

Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения темпе-ратуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .

Цвет пламени:
Liкарминно-красный
Naжѐлтый
Kфиолетовый
Rbбуро-красный
Csфиолетово-красный

1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K + I2 = 2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na + S = Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

2Na + H2 = 2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например , калий реагирует с водой очень бурно:

2K 0 + H2 + O = 2 K + OH + H2 0

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , натрий бурно реагирует с соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодейст-вии с концентрированной азотной кислотой образуется оксид азота (I):

С разбавленной азотной кислотой образуется молекулярный азот:

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2

Фенол с натрием реагирет с образованием фенолята натрия и водорода:

Метанол с натрием образуют метилат натрия и водород:

Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH + 2Li → 2CH3COOOLi + H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например , хлорметан с натрием образует этан и хлорид натрия:

2.6. В расплаве щелочные металлы могут вытеснять менее активные металлы из солей . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , натрий вытесняет алюминий из расплава хлорида алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:

1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

2. Взаимодействием натрия с пероксидом натрия :

3. Взаимодействием натрия с расплавом щелочи :

2Na + 2NaOН → 2Na2O + Н2

4. Оксид лития можно получить разложением гидроксида лития :

2LiOН → Li2O + Н2O

Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид натрия взаимодействует с оксидом фосфора (V):

Оксид лития взаимодейсвует с амфотерным оксидом алюминия:

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O + 2HCl → 2KCl + H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например , оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O + H2O → 2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образовани-ем карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окис-лительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образовани-ем сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором пермангана-та калия пероксид натрия образует соль и молекулярный кислород:

1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гид-ридов и некоторых других бинарных соединений с водой также образуют-ся щелочи.

Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид калия с фосфорной кислотой реагирует с образова-нием фосфатов, гидрофосфатов или дигидрофосфатов:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид натрия с углекислым газом реагирует с образова-нием карбонатов или гидрокарбонатов:

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в щелочах:

Сера взаимодействует с щелочами только при нагревании:

6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .

С щелочами взаимодействуют соли тяжелых металлов.

Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Нитраты щелочных металлов при нагревании разлагаются на нитраты и кислород. Исключениенитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.

Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

Сильные окислители окисляют нитриты до нитратов.

Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

источник

Adblock
detector