Меню

Если есть время и расстояние как найти скорость время

С древних времен людей беспокоит мысль о достижении сверх скоростей, так же как не дают покоя раздумья о высотах, летательных аппаратах. На самом деле это два очень сильно связанных между собой понятия. То, насколько быстро можно добраться из одного пункта в другой на летательном аппарате в наше время, зависит полностью от скорости. Рассмотрим же способы и формулы расчета этого показателя, а также времени и расстояния.

На самом деле, рассчитать ее можно несколькими способами:

  • через формулу нахождения мощности;
  • через дифференциальные исчисления;
  • по угловым параметрам и так далее.

В этой статье рассматривается самый простой способ с самой простой формулой – нахождение значения этого параметра через расстояние и время. Кстати, в формулах дифференциального расчета также присутствуют эти показатели. Формула выглядит следующим образом:

  • v – скорость объекта,
  • S – расстояние, которое пройдено или должно быть пройдено объектом,
  • t – время, за которое пройдено или должно быть пройдено расстояние.

Как видите, в формуле первого класса средней школы нет ничего сложного. Подставив соответствующие значения вместо буквенных обозначений, можно рассчитать быстроту передвижения объекта. Например, найдем значение скорости передвижения автомобиля, если он проехал 100 км за 1 час 30 минут. Сначала требуется перевести 1 час 30 минут в часы, так как в большинстве случаев единицей измерения рассматриваемого параметра считается километр в час (км/ч). Итак, 1 час 30 минут равно 1,5 часа, потому что 30 минут есть половина или 1/2 или 0,5 часа. Сложив вместе 1 час и 0,5 часа получим 1,5 часа.

Теперь нужно подставить имеющиеся значения вместо буквенных символов:

Здесь v=66,66 км/ч, и это значение очень приблизительное (незнающим людям об этом лучше прочитать в специальной литературе), S=100 км, t=1,5 ч.

Таким нехитрым способом можно найти скорость через время и расстояние.

А что делать, если нужно найти среднее значение? В принципе, вычисления, показанные выше, и дают в итоге результат среднего значение искомого нами параметра. Однако можно вывести и более точное значение, если известно, что на некоторых участках по сравнению с другими скорость объекта была непостоянной. Тогда пользуются таким видом формулы:

vср=(v1+v2+v3+. +vn)/n, где v1, v2, v3, vn – значения скоростей объекта на отдельных участках пути S, n – количество этих участков, vср – средняя скорость объекта на всем протяжении всего пути.

Эту же формулу можно записать иначе, используя путь и время, за которое объект прошел этот путь:

  • vср=(S1+S2+. +Sn)/t, где vср – средняя скорость объекта на всем протяжении пути,
  • S1, S2, Sn – отдельные неравномерные участки всего пути,
  • t – общее время, за которое объект прошел все участки.

Можно записать использовать и такой вид вычислений:

  • vср=S/(t1+t2+. +tn), где S – общее пройденное расстояние,
  • t1, t2, tn – время прохождения отдельных участков расстояния S.

Но можно записать эту же формулу и в более точном варианте:

vср=S1/t1+S2/t2+. +Sn/tn, где S1/t1, S2/t2, Sn/tn – формулы вычисления скорости на каждом отдельном участке всего пути S.

Таким образом, очень легко найти искомый параметр, используя данные выше формулы. Они очень просты, и как уже было указано, используются в начальных классах. Более сложные формулы базируются на этих же формулах и на тех же принципах построения и вычисления, но имеют другой, более сложный вид, больше переменных и разных коэффициентов. Это нужно для получения наиболее точного значения показателей.

Существую и другие способы и методы, которые помогают вычислить значения рассматриваемого параметра. В пример можно привести формулу вычисления мощности:

N=F*v*cos α , где N – механическая мощность,

cos α – косинус угла между векторами силы и скорости.

Можно и наоборот, зная скорость, найти значение расстояния или времени. Например:

S=v*t, где v – понятно что такое,

S – расстояние, которое требуется найти,

t – время, за которое объект прошел это расстояние.

Таким образом вычисляется значение расстояния.

Или вычисляем значение времени, за которое пройдено расстояние:

t=S/v, где v – все та же скорость,

S – расстояние, пройденный путь,

t – время, значение которого в данном случае нужно найти.

Для нахождения средних значений этих параметров существует довольно много представлений как данной формулы, так и всех остальных. Главное, знать основные правила перестановок и вычислений. А еще главнее знать сами формулы и лучше наизусть. Если же запомнить не получается, тогда лучше записывать. Это поможет, не сомневайтесь.

Пользуясь такими перестановками можно с легкостью найти время, расстояние и другие параметры, используя нужные, правильные способы их вычисления.

В нашем видео вы найдете интересные примеры решения задач на нахождение скорости, времени и расстояния.

источник

Давайте школьный урок физики превратим в увлекательную игру! В этой статье нашей героиней станет формула “Скорость, время, расстояние”. Разберем отдельно каждый параметр, приведем интересные примеры.

Что же такое “скорость”? Можно наблюдать, как одна машина едет быстрее, другая –медленее; один человек идет быстрым шагом, другой – не торопится. Велосипедисты тоже едут с разной скоростью. Да! Именно скоростью. Что же под ней подразумевается? Конечно же, расстояние, которое прошел человек. проехала машина за какое-то определенное время. Допустим, что скорость человека 5 км/ч. То есть за 1 час он прошел 5 километров.

Как находить скорость, время, расстояние? Начнем со скорости. Посмотрите внимательно, в чем она измеряется? Естественно, км/ч, м/с. Существуют и другие единицы измерения, например, км/с (в космонавтике), мм/ч (в биохимии). Обратите внимание на то, что стоит перед знаком “/” и после. Во-первых, он означает “дробь”, а значит, в числителе – мм, км, м, в знаменателе – ч, с, мин. Во-вторых, кажется это напоминает формулу, не правда ли? Километры, метры – расстояние, длина, а час, секунда, минута – время. Вот вам и подсказка. Чтобы проще было запомнить, как находить скорость, посмотрите не единицы измерения (км/ч, м/с). Одними словами:

Что из себя представляет время? Разумеется, оно зависит от скорости. Например, вы ждете у порога дома маму и старшего брата. Они идут из магазина. Брат дошел намного раньше. Маму пришлось ждать еще минут 5. Почему? Потому что они шли с разной скоростью. Разумеется, чтобы быстрее добраться до места назначения, нужно прибавить скорость: ускорить шаг, надавить на “газ” в авто посильнее, разогнаться на велосипеде. Только при спешке будьте осторожны и бдительны, чтобы не врезаться в кого-то или во что-то.

Читайте также:  Как узнать лицевой счет в билайне

Как находить время? У скорости есть подсказка – км/ч. А как быть со временем? Во-первых, время измеряется в минутах, секундах, часах. Формула “скорость, время, расстояние” здесь преображается следующим образом:

время t[сек., мин., ч]=S[м, мм, км]/v[м/с, мм/мин, км/ч].

Если преобразовать дробь по всем правилам математики, сократить параметр расстояния (длины), то останется только секунда, минута или час.

Здесь будет легче сориентироваться, скорее всего, автомобилистам, у которых есть счетчик пробега в машине. Они смогут определить, сколько километров проехали, а еще и скорость знают. Но так как движение неравномерное, то установить тоное время перемещения не получится, если только мы возьмем среднюю скорость.

Формула пути (расстояния) – произведение скорости и времени. Конечно же, самый удобный и доступный параметр – это время. Часы есть у всех. Скорость пешехода не строго 5 км/ч, а приблизительно. Поэтому здесь может быть погрешность. В таком случае, вам лучше взять карту местности. Обратите внимание, какой масштаб. Должно быть указано, сколько километров или метров в 1 см. Приложите линейку и замерьте длину. Например, от дома до музыкальной школы прямая дорога. Отрезок получился 5 см. А в масштабе указано 1 см = 200 м. Значит, реальное расстояние – 200*5=1000 м=1 км. За сколько вы проходите это расстояние? За полчаса? Выражаясь техническим языком, 30 мин=0,5 ч=(1/2) ч. Если мы решим задачу, то получится, что идете со скоростью 2 км/ч. Всегда вам поможет решить задачу формула “скорость, время, расстояние”.

Советую вам не упускать очень важные моменты. Когда вам дается задача, смотрите внимательно, в каких единицах измерения даны параметры. Автор задачи может схитрить. Напишет в дано:

Человек проехал по тротуару на велосипеде 2 километра за 15 минут. Не спешите сразу решать задачу по формуле, иначе у вас получится ерунда, а учитель ее вам не засчитает. Помните, что ни в коем случае нельзя делать так: 2 км/15 мин. У вас единица измерения получится км/мин, а не км/ч. Вам нужно добиться последнего. Переведите минуты в часы. Как это сделать? 15 минут – это 1/4 часа или 0,25 ч. Теперь можете смело 2км/0,25ч=8 км/ч. Теперь задача решена верно.

Вот так легко запоминается формула “скорость, время, расстояние”. Только соблюдайте все правила математики, обращайте внимание на единицы измерения в задаче. Если есть нюансы, как в рассмотренном чуть выше примере, сразу же переводите в систему единиц СИ, как положено.

источник

Задачи на кинематику, в которых необходимо вычислить скорость, время или путь равномерно и прямолинейно движущихся тел, встречаются в школьном курсе алгебры и физики. Для их решения найдите в условии величины, которые можно между собой уравнять. Если в условии требуется определить время при известной скорости, воспользуйтесь следующей инструкцией.

Ручка;
– бумага для записей.

Спонсор размещения P&G Статьи по теме “Как найти время, зная скорость” Как найти модуль скорости Как найти расстояние, зная скорость Как найти начальную скорость тела

Самый простой случай – движение одного тела с заданной равномерной скоростью. Известно расстояние, которое тело прошло. Найдите время в пути: t = S/v, час, где S – расстояние, v – средняя скорость тела.

Второй пример – на встречное движение тел. Из пункта А в пункт В движется автомобиль со скоростью 50 км/ч. Навстречу ему из пункта B одновременно выехал мопед со скоростью 30 км/час. Расстояние между пунктами А и В 100 км. Требуется найти время, через которое они встретятся. Обозначьте точку встречи буквой К. Пусть расстояние АК, которое проехал автомобиль, будет х км. Тогда путь мотоциклиста составит 100-х км. Из условия задачи следует, что время в пути у автомобиля и мопеда одинаково. Составьте уравнение: х/v = (S-x)/v’, где v, v’ – скорости автомобиля и мопеда. Подставив данные, решите уравнение: x = 62,5 км. Теперь найдите время: t = 62,5/50 = 1,25 часа или 1 час 15 минут. Третий пример – даны те же условия, но автомобиль выехал на 20 минут позже мопеда. Определить, сколько времени в пути будет автомобиль до встречи с мопедом. Составьте уравнение, аналогично предыдущему. Но в этом случае время мопеда в пути будет на 20 минут больше, чем у автомобиля. Для уравнивания частей, вычтите одну треть часа из правой части выражения: х/v = (S-x)/v’-1/3. Найдите х – 56,25. Вычислите время: t = 56,25/50 = 1,125 часа или 1 час 7 минут 30секунд.

Четвертый пример – задача на движение тел в одном направлении. Автомобиль и мопед с теми же скоростями двигаются из точки А. Известно, что автомобиль выехал на полчаса позже. Через какое время он догонит мопед? В этом случае одинаковым будет расстояние, которое проехали транспортные средства. Пусть время в пути автомобиля будет x часов, тогда время в пути мопеда будет x+0,5 часов. У вас получилось уравнение: vx = v’(x+0,5). Решите уравнение, подставив значение скорости, и найдите x – 0,75 часа или 45 минут.

Пятый пример – автомобиль и мопед с теми же скоростями двигаются в одном направлении, но мопед выехал из точки В, находящейся на расстоянии 10 км от точки А, на полчаса раньше. Вычислить, через какое время после старта автомобиль догонит мопед. Расстояние, которое проехал автомобиль, на 10 км больше. Прибавьте эту разницу к пути мотоциклиста и уравняйте части выражения: vx = v’(x+0,5)-10. Подставив значения скорости и решив его, вы получите ответ: t = 1,25 часа или 1 час 15 минут. Как просто

Расстояние является общей характеристикой длины, которая показывает степень удаленности двух объектов друг от друга. Расстояние измеряется в различных единицах длины, чаще всего это сантиметры, метры, километры. Для ее расчета можно воспользоваться одной формулой. Вам понадобится Скорость тела,

Читайте также:  Как связать комбез для той терьера

Давайте школьный урок физики превратим в увлекательную игру! В этой статье нашей героиней станет формула “Скорость, время, расстояние”. Разберем отдельно каждый параметр, приведем интересные примеры.

Что же такое “скорость”? Можно наблюдать, как одна машина едет быстрее, другая -медленее; один человек идет быстрым шагом, другой – не торопится. Велосипедисты тоже едут с разной скоростью. Да! Именно скоростью. Что же под ней подразумевается? Конечно же, расстояние, которое прошел человек. проехала машина за какое-то Допустим, что 5 км/ч. То есть за 1 час он прошел 5 километров.

Время, расстояние? Начнем со скорости. Посмотрите внимательно, в чем она измеряется? Естественно, км/ч, м/с. Существуют и другие единицы измерения, например, км/с (в космонавтике), мм/ч (в биохимии). Обратите внимание на то, что стоит перед знаком “/” и после. Во-первых, он означает “дробь”, а значит, в числителе – мм, км, м, в знаменателе – ч, с, мин. Во-вторых, кажется это напоминает формулу, не правда ли? Километры, метры – расстояние, длина, а час, секунда, минута – время. Вот вам и подсказка. Чтобы проще было запомнить, как находить скорость, посмотрите не единицы измерения (км/ч, м/с). Одними словами:

Что из себя представляет время? Разумеется, оно зависит от скорости. Например, вы ждете у порога дома маму и старшего брата. Они идут из магазина. Брат дошел намного раньше. Маму пришлось ждать еще минут 5. Почему? Потому что они шли с разной скоростью. Разумеется, чтобы быстрее добраться до места назначения, нужно прибавить скорость: ускорить шаг, надавить на “газ” в авто посильнее, разогнаться на велосипеде. Только при спешке будьте осторожны и бдительны, чтобы не врезаться в кого-то или во что-то.

У скорости есть подсказка – км/ч. А как быть со временем? Во-первых, время измеряется в минутах, секундах, часах. Формула “скорость, время, расстояние” здесь преображается следующим образом:

время t[сек., мин., ч]=S[м, мм, км]/v[м/с, мм/мин, км/ч].

Если преобразовать дробь по всем правилам математики, сократить параметр расстояния (длины), то останется только секунда, минута или час.

Здесь будет легче сориентироваться, скорее всего, автомобилистам, у которых есть счетчик пробега в машине. Они смогут определить, сколько километров проехали, а еще и скорость знают. Но так как движение неравномерное, то установить тоное время перемещения не получится, если только мы возьмем

Формула пути (расстояния) – произведение скорости и времени. Конечно же, самый удобный и доступный параметр – это время. Часы есть у всех. Скорость пешехода не строго 5 км/ч, а приблизительно. Поэтому здесь может быть погрешность. В таком случае, вам лучше взять карту местности. Обратите внимание, какой масштаб. Должно быть указано, сколько километров или метров в 1 см. Приложите линейку и замерьте длину. Например, от дома до музыкальной школы прямая дорога. Отрезок получился 5 см. А в масштабе указано 1 см = 200 м. Значит, реальное расстояние – 200*5=1000 м=1 км. За сколько вы проходите это расстояние? За полчаса? Выражаясь техническим языком, 30 мин=0,5 ч=(1/2) ч. Если мы решим задачу, то получится, что идете со скоростью 2 км/ч. Всегда вам поможет решить задачу формула “скорость, время, расстояние”.

Советую вам не упускать очень важные моменты. Когда вам дается задача, смотрите внимательно, в каких единицах измерения даны параметры. Автор задачи может схитрить. Напишет в дано:

Человек проехал по тротуару на велосипеде 2 километра за 15 минут. Не спешите сразу решать задачу по формуле, иначе у вас получится ерунда, а учитель ее вам не засчитает. Помните, что ни в коем случае нельзя делать так: 2 км/15 мин. У вас единица измерения получится км/мин, а не км/ч. Вам нужно добиться последнего. Переведите минуты в часы. Как это сделать? 15 минут – это 1/4 часа или 0,25 ч. Теперь можете смело 2км/0,25ч=8 км/ч. Теперь задача решена верно.

Вот так легко запоминается формула “скорость, время, расстояние”. Только соблюдайте все правила математики, обращайте внимание на единицы измерения в задаче. Если есть нюансы, как в рассмотренном чуть выше примере, сразу же переводите в систему единиц СИ, как положено.

Из двух поселков выехали одновременно навстречу друг другу два велосипедиста и встретились через два часа. Один ехал со скоростью 15 км в час, а второй – со скоростью 18 км в час. Найти расстояние между поселками. 2 часа 18 км/ч S = (V 1 + V 2) · t встр 15 км/ч

Из двух поселков расстояние между ними 66 км выехали одновременно навстречу друг другу два велосипедиста и встретились через два часа. Второй ехал со скоростью 18 км в час. Найдите скорость первого велосипедиста? 18 км/ч S = (V 1 + V 2) · t встр? км/ч 66 КМ 2 часа

Велосипедист и всадник движутся навстречу друг другу. Скорость велосипедиста 16 км/ч, а скорость всадника 22 км/ч. Какое между ними было расстояние, если они встретились через три часа? Велосипедист и всадник движутся навстречу друг другу. Скорость велосипедиста 16 км/ч, а скорость всадника 22 км/ч. Какое между ними было расстояние, если они встретились через три часа? 3 часа 16 км/ч 22 км/ч Решите самостоятельно.

Из двух сел выехали одновременно навстречу друг другу трактор и повозка с сеном. Скорость трактора 9 км/ч, а скорость повозки 7 км/ч. Чему равно расстояние между селами, если встреча произошла через 2 ч.? Одновременно из двух городов навстречу друг другу выехали два автомобиля. Один ехал со скоростью 70км/ч, а другой – 110 км/ч. Через сколько времени они встретятся, если расстояние между городами 360 км? Одновременно из двух городов навстречу друг другу выехали два автомобиля. Один ехал со скоростью 70км/ч, а другой – 110 км/ч. Через сколько времени они встретятся, если расстояние между городами 360 км? Из пункта A и В навстречу друг другу выехали автомобиль со скоростью 60км/ч и велосипедист со скоростью 15км/ч. Встретятся ли автомобиль и велосипедист через 2 часа, если расстояние между пунктами 160 км? Решите самостоятельно.

Читайте также:  Какие сорта винограда подходят для вина

С одной и той же станции в одно и то же время вышли в противоположных направлениях два поезда. Скорость одного поезда 50 км/ч, а скорость другого 85км/ч. Через какое время расстояние между ними будет 540 км? км/ч 50 км/ч 540 КМ t= 540:() = 4 ч t =S: (V 1 + V 2) РЕШЕНИЕ

Два катера плывут в противоположных направлениях со скоростями 25 км/ч и 32 км/ч. Какое будет между ними расстояние через 3 часа? 32 км/ч 25 км/ч 3 часа S = (V 1 + V 2) · t удал S = ()·3=171 км РЕШЕНИЕ

Из двух городов, расстояние между которыми равно 65 км, выехали одновременно в противоположных направлениях два автомобиля. Один из них шел со скоростью 80 км/ч, а другой – 110 км/ч. На каком расстоянии друг от друга будут автомобили через 3 часа после выезда? 65 КМ 110 км/ч 80 км/ч 3 часа S = 65+()·3=635 км РЕШЕНИЕ Ссылки на Интернет – источники изображений 9208c2de446cd&showforum=223-http://forum.materinstvo.ru/index.php?s=d0c1a26d8e62fe7927b 9208c2de446cd&showforum=223- картинки – анимированные стрелки -анимашки -коллекция анимашек

Линия, которую описывает материальная точка при своем движении, называется траекторией.

Длиной пути называют сумму длин всех участков траектории, которые прошла точка за рассматриваемый промежуток времени от t 1 до t 2 .

В том случае, если уравнения движения представлены в прямоугольной декартовой системе координат, то длина пути (s) определяется как:

В цилиндрических координатах длина пути может быть выражена как:

В сферических координатах формулу длины пути запишем:

Местоположение перемещающейся материальной точки в фиксированный момент времени, например t=t 1 называют начальным положением. Очень часто полагают t 1 =0. Длин пути, который прошла материальная точка из начального положения – скалярная функция времени: s=s(t).

Считают, что за промежуток времени материальная точка проходит путь ds, который называют элементарным. При этом:

где – вектор элементарного перемещения материальной точки, v – модуль скорости ее движения.

Длина пути при равномерном движении (v=const) точки равна:

где t 1 – начало отсчета движения, t 2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути на отрезке времени от до находят как:

где – средняя путевая скорость. При равномерном движении .

Однажды случайный прохожий спросил Эзопа: «Как скоро я доберусь до города?» Эзоп ответил: «Не знаю». Прохожему ничего не оставалось, как только пойти дальше своей дорогой – и тогда Эзоп крикнул ему вслед: «Ты дойдёшь до города к полудню!» Прохожий удивился: «Почему же ты не ответил мне сразу, если знал ответ?» И Эзоп сказал: «Как же я мог сказать это, не зная, как ты ходишь?»

Действительно, о том, что время, расстояние и скорость – величины взаимосвязанные, известно давно. Из этого логически следует, что зная две из них, можно вычислить третью. Формула тоже представляется предельно логичной: если скорость равна, например, 60 км/ч (возьмём для примера разрешённую скорость автомобиля в городе) – т.е. за час он проезжает 60 километров, то для нахождения расстояния, которое он преодолеет за два часа, нам надо всего лишь умножить шестьдесят на два – в результате мы получаем 120 километров.

Представим это в виде формулы. Расстояние в физике принято обозначать латинской буквой S – почему так, с точностью сказать нельзя, это связывают и с немецким словом «Spur», что переводится как «колея» или «след», и с латинскими словами «sulcus» – что значит «борозда» – и «semita», переводимом как «тропинка» или «путь». Яснее происхождение обозначений для других составляющих этой формулы. Время обозначается латинской буквой t – от латинского слова «tempus», которое, собственно и означает – «время» (к нему же восходит музыкальный термин «темп» – хотя в этом можно усмотреть некоторую «путаницу»: темп в музыке – это всё-таки ближе к понятию скорости, чем времени). Время же – латинская буква v – что опять же связано с латынью: «скорость» на этом языке именуется «velocitas».

Итак, формула расстояния выглядит следующим образом: v×t=s

Исходя из этого – и зная правила умножения и деления, разумеется, которые изучают во втором классе, когда и начинают решать такие задачи – мы легко можем найти и другие составляющие. Как мы помним из начальной школы, чтобы вычислить один из множителей, необходимо разделить произведение (т.е. результат умножения) на другой из них. Иными словами, делим расстояние (s) на время (t) – получаем скорость (v), если же нам нужно вычислить время(v) – поступаем наоборот, т.е. делим расстояние на время.

Ничего сложного в таких вычислениях нет – так что с ними с лёгкостью справляются уже второклассники… правда, такая формула предполагает, что объект, с которым мы имеем дело, постоянно движется с одной и той же скоростью (такое движение в физике называется равномерным) – что далеко не всегда имеет место в реальности. Что делать, если скорость движущегося тела изменяется – как бывает, например, когда автомобиль трогается с места?

Тут мы уже имеем дело с более сложной формулой – а именно, с формулой равноускоренного движения, для которого приходится ввести новую величину – ускорение, традиционно обозначаемое латинской буквой a. Чтобы вычислить расстояние при равноускоренном движении (при условии, что тело стартует из состояния покоя), нам придётся умножить ускорение на возведённое в квадрат время, а результат разделить на два.

Остаётся один вопрос – как вычислить ускорение? Для этого надо знать начальную скорость и конечную, соотношение между которыми характеризуется такой формулой:

(v – это конечная скорость, а v0 – начальная). «Вытащить» ускорение из этой формулы – не проблема: из конечной скорости вычитаем начальную и делим результат на время.

Остаётся только добавить, что формулами, характеризующими равноускоренное движение, мы обязаны Г.Галилею, который изучал это явление на примере ускорения при свободном падении.

источник

Adblock
detector