Меню

Диаметр 60 см какая длина окружности

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π.

Определение длины окружности

Произвести расчёт окружности можно по следующей формуле:

Вычислить длину окружности, имеющей радиус 10 сантиметров.

Формула для вычисления дины окружности имеет вид:

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 5 = 31,4 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π, необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

источник

Решение задач с геометрическим содержанием.

§ 117. Длина окружности и площадь круга.

1. Длина окружности. Окружностью называется замкнутая плоская кривая линия, все точки которой находятся на равном расстоянии от одной точки (О), называемой центром окружности (рис. 27).

Окружность вычерчивается с помощью циркуля. Для этого острую ножку циркуля ставят в центр, а другую (с карандашом) вращают вокруг первой до тех пор, пока конец карандаша не вычертит полной окружности. Расстояние от центра до любой точки окружности называется её радиусом. Из определения следует, что все радиусы одной окружности равны между собой.

Отрезок прямой линии (АВ), соединяющий две любые точки окружности и проходящий через её центр, называется диаметром. Все диаметры одной окружности равны между собой; диаметр равен двум радиусам.

Как найти длину окружности? Практически в некоторых случаях длину окружности можно найти путём непосредственного измерения. Это можно сделать, например, при измерении окружности сравнительно небольших предметов (ведро, стакан и т. п.). Для этого можно воспользоваться рулеткой, тесьмой или шнуром.

В математике применяется приём косвенного определения длины окружности. Он состоит в вычислении по готовой формуле, которую мы сейчас выведем.

Если мы возьмём несколько больших и малых круглых предметов (монета, стакан, ведро, бочка и т. д.) и измерим у каждого из них длину окружности и длину диаметра, то получим для каждого предмета два числа (одно, измеряющее длину окружности, и другое — длину диаметра). Естественно, что для малых предметов эти числа будут небольшими, а для крупных — большими.

Однако если мы в каждом из этих случаев возьмём отношение полученных двух чисел (длины окружности и диаметра), то при тщательном выполнении измерения найдём почти одно и то же число. Обозначим длину окружности буквой С, длину диаметра буквой D, тогда отношение их будет иметь вид С : D. Фактические измерения всегда сопровождаются неизбежными неточностями. Но, выполнив указанный опыт и произведя необходимые вычисления, мы получим для отношения С : D примерно следующие числа: 3,13; 3,14; 3,15. Эти числа очень мало отличаются одно от другого.

В математике путём теоретических соображений установлено, что искомое отношение С : D никогда не меняется и оно равно бесконечной непериодической дроби, приближённое значение которой с точностью до десятитысячных долей равно 3,1416. Это значит, что всякая окружность длиннее своего диаметра в одно и то же число раз. Это число принято обозначать греческой буквой π (пи). Тогда отношение длины окружности к диаметру запишется так: С : D = π. Мы будем ограничивать это число только сотыми долями, т. е. брать π = 3,14.

Напишем формулу для определения длины окружности.

т. е. длина окружности равна произведению числа π на диаметр.

Задача 1. Найти длину окружности (С) круглой комнаты, если диаметр её D = 5,5 м.

Принимая во внимание изложенное выше, мы должны для решения этой задачи увеличить диаметр в 3,14 раза:

Задача 2. Найти радиус колеса, у которого длина окружности 125,6 см.

Эта задача обратна предыдущей. Найдём диаметр колеса:

Найдём теперь радиус колеса:

2. Площадь круга. Чтобы определить площадь круга, можно было бы начертить на бумаге круг данного радиуса, покрыть его прозрачной клетчатой бумагой и потом сосчитать клетки, находящиеся внутри окружности (рис. 28).

Но такой способ неудобен по многим причинам. Во-первых, вблизи контура круга получается ряд неполных клеток, о величине которых судить трудно. Во-вторых, нельзя покрыть листом бумаги большой предмет (круглую клумбу, бассейн, фонтан и др.). В-третьих, подсчитав клетки, мы всё-таки не получаем никакого правила, позволяющего нам решать другую подобную задачу. В силу этого поступим иначе. Сравним круг с какой-нибудь знакомой нам фигурой и сделаем это следующим образом: вырежем круг из бумаги, разрежем его сначала по диаметру пополам, затем каждую половину разрежем ещё пополам, каждую четверть — ещё пополам и т. д., пока не разрежем круг, например, на 32 части, имеющие форму зубцов (рис. 29).

Затем сложим их так, как показано на рисунке 30, т. е. сначала расположим 16 зубцов в виде пилы, а затем в образовавшиеся отверстия вложим 15 зубцов и, наконец, последний оставшийся зубец разрежем по радиусу пополам и приложим одну часть слева, другую — справа. Тогда получится фигура, напоминающая прямоугольник.

Читайте также:  Окно от пола до потолка как оформить

Длина этой фигуры (основание) равна приблизительно длине полуокружности, а высота — приблизительно радиусу. Тогда площадь такой фигуры можно найти путём умножения чисел, выражающих длину полуокружности и длину радиуса. Если обозначим площадь круга буквой S, длину окружности буквой С, радиус буквой r, то можем записать формулу для определения площади круга:

которая читается так: площадь круга равна длине полуокружности, умноженной на радиус.

Задача. Найти площадь круга, радиус которого равен 4 см. Найдём сначала длину окружности, потом длину полуокружности, а затем умножим её на радиус.

1) Длина окружности С = π D = 3,14 • 8 = 25,12 (см).

2) Длина половины окружности C /2 = 25,12 : 2= 12,56 (см).

3) Площадь круга S = C /2r = 12,56 • 4 = 50,24 (кв. см).

§ 118. Поверхность и объём цилиндра.

Задача 1. Найти полную поверхность цилиндра, у которого диаметр основания 20,6 см и высота 30,5 см.

Форму цилиндра (рис. 31) имеют: ведро, стакан (не гранёный), кастрюля и множество других предметов.

Полная поверхность цилиндра (как и полная поверхность прямоугольного параллелепипеда) состоит из боковой поверхности и площадей двух оснований (рис. 32).

Чтобы наглядно представить себе, о чём идёт речь, необходимо аккуратно сделать модель цилиндра из бумаги. Если мы от этой модели отнимем два основания, т. е. два круга, а боковую поверхность разрежем вдоль и развернём, то будет совершенно ясно, как нужно вычислять полную поверхность цилиндра. Боковая поверхность развернётся в прямоугольник, основание которого равно длине окружности. Поэтому решение задачи будет иметь вид:

1) Длина окружности: 20,6 • 3,14 = 64,684 (см).

2) Площадь боковой поверхности: 64,684 • 30,5= 1972,862(кв.см).

3) Площадь одного основания: 32,342 • 10,3 = 333,1226 (кв.см).

4) Полная поверхность цилиндра:

1972,862 + 333,1226 + 333,1226 = 2639,1072 (кв. см) ≈ 2639 (кв. см).

Задача 2. Найти объём железной бочки, имеющей форму цилиндра с размерами: диаметр основания 60 см и высота 110 см.

Чтобы вычислить объём цилиндра, нужно припомнить, как мы вычисляли объём прямоугольного параллелепипеда (полезно прочитать § 61).

Единицей измерения объёма у нас будет кубический сантиметр. Сначала надо узнать, сколько кубических сантиметров можно расположить на площади основания, а затем найденное число умножить на высоту.

Чтобы узнать, сколько кубических сантиметров можно уложить на площади основания, надо вычислить площадь основания цилиндра. Так как основанием служит круг, то нужно найти площадь круга. Затем для определения объёма умножить её на высоту. Решение задачи имеет вид:

1) Длина окружности: 60 • 3,14 = 188,4 (см).

2) Площадь круга: 94,2 • 30 = 2826 (кв. см).

3) Объём цилиндра: 2826 • 110 = 310 860 (куб. см).

Ответ. Объём бочки 310,86 куб. дм.

Если обозначим объём цилиндра буквой V, площадь основания S, высоту цилиндра H, то можно написать формулу для определения объёма цилиндра:

которая читается так: объём цилиндра равен площади основания, умноженной на высоту.

§ 119. Таблицы для вычисления длины окружности по диаметру.

При решении различных производственных задач часто приходится вычислять длину окружности. Представим себе рабочего, который изготовляет круглые детали по указанным ему диаметрам. Он должен всякий раз, зная диаметр, вычислить длину окружности. Чтобы сэкономить время и застраховать себя от ошибок, он обращается к готовым таблицам, в которых указаны диаметры и соответствующие им длины окружностей.

Приведём небольшую часть таких таблиц и расскажем, как ими пользоваться.

Пусть известно, что диаметр окружности равен 5 м. Ищем в таблице в вертикальном столбце под буквой D число 5. Это длина диаметра. Рядом с этим числом (вправо, в столбце под названием «Длина окружности») увидим число 15,708 (м). Совершенно так же найдём, что если D = 10 см, то длина окружности равна 31,416 см.

По этим же таблицам можно производить и обратные вычисления. Если известна длина окружности, то можно найти в таблице соответствующий ей диаметр. Пусть длина окружности равна приблизительно 34,56 см. Найдём в таблице число, наиболее близкое к данному. Таковым будет 34,558 (разница 0,002). Соответствующий такой длине окружности диаметр равен приблизительно 11 см.

Таблицы, о которых здесь сказано, имеются в различных справочниках. В частности, их можно найти в книжке «Четырёхзначные математические таблицы» В. М. Брадиса. и в задачнике по арифметике С. А. Пономарёва и Н. И. Сырнева.

источник

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):

Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

где C – длина окружности, π – константа, D – диаметр окружности, R – радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задача 1. Найти длину окружности, если её диаметр равен 5 см.

Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

Сначала найдём диаметр окружности, умножив длину радиуса на 2:

теперь найдём длину окружности, умножив π на диаметр:

Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π

следовательно радиус будет равен:

R 7,85 = 7,85 = 1,25 (м)
2 · 3,14 6,28

Площадь круга равна произведению числа π на квадрат радиуса. Формула нахождения площади круга:

где S – площадь круга, а r – радиус круга.

Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:

следовательно, формула нахождения площади круга через диаметр будет выглядеть так:

S = π( D ) 2 = π D 2 = π D 2
2 2 2 4

Задача 1. Найти площадь круга, если его радиус равен 2 см.

Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 2 2 = 3,14 · 4 = 12,56 (см 2 )

Задача 2. Найти площадь круга, если его диаметр равен 7 см.

Сначала найдём радиус круга, разделив его диаметр на 2:

теперь вычислим площадь круга по формуле:

S = πr 2 ≈ 3,14 · 3,5 2 = 3,14 · 12,25 = 38,465 (см 2 )

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D 2 ≈ 3,14 7 2

= 3,14 49 = 153,86 = 38,465 (см 2 )
4 4 4 4

Задача 3. Найти радиус круга, если его площадь равна 12,56 м 2 .

Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

следовательно радиус будет равен:

Длину окружности предметов, окружающих нас, можно измерить с помощью сантиметровой ленты или верёвки (нитки), длину которой потом можно померить отдельно. Но в некоторых случаях померить длину окружности трудно или практически невозможно, например, внутреннюю окружность бутылки или просто длину окружности начерченной на бумаге. В таких случаях можно вычислить длину окружности, если известна длина её диаметра или радиуса.

Чтобы понять, как это можно сделать, возьмём несколько круглых предметов, у которых можно измерить и длину окружности и диаметр. Вычислим отношение длины к диаметру, в итоге получим следующий ряд чисел:

Ведро Таз Бочка Тарелка Стакан
Окружность 91 см 157 см 220 см 78,5 см 23,9 см
Диаметр 29 см 50 см 70 см 25 см 7,6 см
Отношение (с точн. до 0,01) 3,14 3,14 3,14 3,14 3,14

Из этого можно сделать вывод, что отношение длины окружности к её диаметру это постоянная величина для каждой отдельной окружности и для всех окружностей в целом. Это отношение и обозначается буквой π.

Используя эти знания, можно по радиусу или диаметру окружности находить её длину. Например, для вычисления длины окружности с радиусом 3 см нужно умножить радиус на 2 (так мы получим диаметр), а полученный диаметр умножить на π. В итоге, с помощью числа π мы узнали, что длина окружности с радиусом 3 см равна 18,84 см.

источник

Абрамов А. В., Абрамова Н. В., Зайнуллин М. Н.,

Длина окружности находится по формуле:

Длина дуги в один градус равна .

Задача 195. Длина окружности равна 60 см. Найдите длину дуги этой окружности, содержащую 18°.

Задача 196. За длину окружности вавилоняне принимали периметр правильного шестиугольника, вписанного в эту окружность. Найдите приближение для π, которым пользовались вавилоняне.

Задача 197. Шар диаметром 1 м откатился по прямой на 10 м. Сколько полных оборотов он сделал?

Задача 198. Поезд едет со скоростью 81 км/ч. Диаметр его колеса равен 120 см. Сколько оборотов в минуту делает колесо поезда? (Примите π ≈ 3.)

Задача 199. Какова скорость поезда (в км/ч), если диаметр его колеса равен 120 см и оно делает 300 оборотов в минуту. (Примите π ≈ 3.)

Задача 200. При поднятии воды из колодца вал делает 20 оборотов. Найдите глубину колодца (в метрах), если диаметр вала равен 0,2 м. (Примите π ≈ 3.)

Задача 201. Сколько оборотов должен сделать вал, чтобы поднять воду из колодца глубиной 9 м, если диаметр вала равен 0,2 м? (Примите π ≈ 3.)

Задача 202. Длина минутной стрелки часов на Спасской башне Московского кремля приблизительно равна 3,5 м. Найдите длину окружности (в метрах), которую описывает конец минутной стрелки в течение одного часа. (Примите π ≈ 3.)

Задача 203. Длина минутной стрелки часов на Спасской башне Московского кремля приблизительно равна 3,5 м. Какой путь (в сантиметрах) проходит ее конец за 1 мин? (Примите π ≈ 3.)

Задача 204. Длина минутной стрелки часов на Спасской башне Московского кремля приблизительно равна 3,5 м. За сколько минут ее конец пройдет путь длиной 105 см? (Примите π ≈ 3.)

Задача 205. Телега проехала 5,4 км. Диаметры ее переднего и заднего колес равны соответственно 60 см и 90 см. На сколько больше оборотов сделает переднее колесо по сравнению с задним? (Примите π ≈ 3.)

Задача 206. Диаметры переднего и заднего колес телеги равны соответственно 60 см и 90 см. Какое расстояние (в метрах) проехала телега, если ее переднее колесо сделало на 100 оборотов больше, чем заднее? (Примите π ≈ 3.)

Задача 207. Длина экватора земного шара примерно равна 40000 км. На сколько метров увеличился бы этот экватор, если бы радиус земного шара увеличился на 1 м? (Примите π ≈ 3.)

Задача 208. Поле стадиона имеет форму прямоугольника с примыкающими к нему с двух сторон полукругами. Длина беговой дорожки вокруг поля равна 400 м. Длина каждого из двух прямолинейных участков дорожки равна 100 м. Найдите ширину l поля стадиона. В ответе укажите l∙π.

Задача 209. Два спортсмена должны пробежать один круг по дорожке стадиона, форма которого – прямоугольник с примыкающими к нему с двух сторон полукругами. Один бежит по дорожке, расположенной на 2 м дальше от края, чем другой. Какое расстояние должно быть между ними на старте, чтобы компенсировать разность длин дорожек, по которым они бегут? (Примите π ≈ 3.)

Задача 210. Москва и Новороссийск расположены примерно на одном меридиане под 56° и 44° северной широты соответственно. Найдите расстояние между ними по земной поверхности, считая длину большой окружности земного шара равной 40000 км. В ответе укажите целое число километров.

Задача 211. Расстояние между Москвой и Вашингтоном, измеряемое по большой окружности поверхности Земли, примерно равно 7800 км. Найдите примерную величину соответствующей дуги большой окружности, считая длину всей окружности равной 40000 км. В ответе укажите целое число градусов.

Задача 212. Какой длины должен быть приводной ремень, соединяющий два шкива с диаметрами 20 см, если расстояние между их центрами равно 50 см? (Примите π ≈ 3.)

Задача 213. Столяру нужно сделать круглый стол на 6 человек. Каким должен быть диаметр стола (в сантиметрах), чтобы на каждого из сидящих за столом шести человек приходилось 80 см по окружности стола? (Примите π ≈ 3.)

Задача 214. Какое наибольшее число людей можно рассадить за круглым столом радиуса 1 м так, чтобы на каждого человека приходилось не менее 60 см длины дуги окружности стола? (Примите π ≈ 3.)

Задача 215. Водопроводная труба имеет в обхвате 246 см и толщину стенок 2 см. Найдите внутренний диаметр сечения трубы. (Примите π ≈ 3.)

Задача 216. Двадцать стальных шариков диаметром по 16 мм каждый находятся в подшипнике. Используя таблицу тригонометрических функций, найдите радиус внутреннего круга подшипника.

Задача 217. Под каким углом человек видит ноготь своего указательного пальца вытянутой руки, если ширина ногтя примерно равна 1 см, а расстояние от него до глаза человека примерно равно 60 см? В ответе укажите целое число градусов. (Примите π ≈ 3.)

Задача 218. Стрелок из лука видит мишень диаметра 120 см под углом 1°. Найдите расстояние до мишени. Укажите приближенное значение, выражаемое целым числом метров. (Примите π ≈ 3.)

Задача 219. Человек среднего роста (1,7 м) виден издали под углом 12′. Найдите расстояние до него. В ответе укажите целое число метров. (Примите π ≈ 3.)

Задача 220. Телеграфный столб высотой 8 м виден под углом 30′. Найдите расстояние до него. В ответе укажите целое число метров. (Примите π ≈ 3.)

Задача 221. Луна видна с Земли под углом 30′. Найдите приближенное расстояние до Луны, зная, что ее диаметр приближенно равен 3400 км. В ответе укажите целое число километров. (Примите π ≈ 3.)

Задача 222. Солнце видно с Земли под углом 30′. Найдите приближенное расстояние до Солнца, зная, что его диаметр приближенно равен 1300000 км. В ответе укажите целое число километров. (Примите π ≈ 3.)

Задача 223. Расстояние от Земли до Луны приблизительно равно 408000 км. Диаметр Земли приближенно равен 13000 км. Найдите примерный угол, под которым Земля видна с поверхности Луны. В ответе укажите целое число градусов. (Примите π ≈ 3.)

Задача 224. Под каким углом виден самолет, длина которого равна 30 м, пролетающий над наблюдателем на высоте 9000 м? В ответе укажите приближенное значение в минутах. (Примите π ≈ 3.)

источник

Окружность – геометрическое место точек плоскости, расстояние от которых до центра окружности равно.

Центр окръжности

Радиус: расстояние от центра окружности до его границы.

Диаметр: наибольшее расстояние от одной границы окружности до другой. Диаметр равен двум радиусам.

$d = 2\cdot r$

Периметр (длина окружности): длина границы окружности.

Длина окружности $= \pi \cdot$ диаметр $= 2 \cdot \pi \cdot$ радиус
Длина окружности $= \pi \cdot d = 2 \cdot \pi \cdot r$

$\pi$ – pi: число, равное 3,141592. или $\approx \frac<22><7>$, то есть отношение $\frac<\text<длины окружности>><\text<диаметр>>$ любого окружности.

Дуга: изогнутая линия, которая является частью окружности.

Дуги окружности измеряется в градусах или радианах.
Например: 90° или $\frac<\pi><2>$ – четверть круга,
180° или $\pi$ – половина круга.
Сумма всех дуг окружности составляет 360° или $2\pi$

Хорда: отрезок прямой, соединяющей две точки на окружности.

Сектор: похож на часть пирога (клин).

Касательная к окружности: прямая, перпендикулярна к радиусу, и имеющая ТОЛЬКО одну общую точку с окуржностью.

Длина окружности $=\pi \cdot \text <диаметр>= 2\cdot \pi \cdot \text<радиус>$

Площадь круга $= \pi \cdot$ радиус 2

Радиус обозначается как r , диаметр как d , длина окружности как P и площадь как S .

Площадь сектора круга K : (с центральным углом $\theta$ и радиусом $r$).
Если угол $\theta$ в градусах, тогда площадь = $\frac<\theta> <360>\pi r^2$
Если угол $\theta$ в радианах, тогда площадь, тогда площадь = $\frac<\theta> <2>r^2$

Если длина дуги составляет $\theta$ градуов или радиан, то значение центрального угла также $\theta$ (градусов или радиан).

Если вы знаете длину дуги (в дюймах, ярдах, футах, сантиметрах, метрах . ) вы можете найти значение её соответствующего центрального угла ($\theta$) по формуле:

Вписанный угол это угол с вершиной на окружности и со сторонами, которые содержат хорды окружности.
На рисунке, угол APB это вписанный угол.

Пример:
$\w > $\angle APB = \frac<84> <2>= 42^\circ$

Случай 1: два секущие пересекаются внутри окружности.

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны $\frac<1><2>(60^\circ + 50^\circ)=55^\circ$

Случай 2: две секущие пересекаются вне окружности.

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

На рисунке дуга AB=80° и дуги CD=30°.
$\angle ABC = \frac<1><2>(80 – 30) = \frac<1> <2>\cdot 50 = 25^\circ$


Если две хорды пересекаются внутри окружности, как на рисунке выше, тогда:

источник

Окружность – геометрическое место точек плоскости, расстояние от которых до центра окружности равно.

Центр окръжности

Радиус: расстояние от центра окружности до его границы.

Диаметр: наибольшее расстояние от одной границы окружности до другой. Диаметр равен двум радиусам.

$d = 2\cdot r$

Периметр (длина окружности): длина границы окружности.

Длина окружности $= \pi \cdot$ диаметр $= 2 \cdot \pi \cdot$ радиус
Длина окружности $= \pi \cdot d = 2 \cdot \pi \cdot r$

$\pi$ – pi: число, равное 3,141592. или $\approx \frac<22><7>$, то есть отношение $\frac<\text<длины окружности>><\text<диаметр>>$ любого окружности.

Дуга: изогнутая линия, которая является частью окружности.

Дуги окружности измеряется в градусах или радианах.
Например: 90° или $\frac<\pi><2>$ – четверть круга,
180° или $\pi$ – половина круга.
Сумма всех дуг окружности составляет 360° или $2\pi$

Хорда: отрезок прямой, соединяющей две точки на окружности.

Сектор: похож на часть пирога (клин).

Касательная к окружности: прямая, перпендикулярна к радиусу, и имеющая ТОЛЬКО одну общую точку с окуржностью.

Длина окружности $=\pi \cdot \text <диаметр>= 2\cdot \pi \cdot \text<радиус>$

Площадь круга $= \pi \cdot$ радиус 2

Радиус обозначается как r , диаметр как d , длина окружности как P и площадь как S .

Площадь сектора круга K : (с центральным углом $\theta$ и радиусом $r$).
Если угол $\theta$ в градусах, тогда площадь = $\frac<\theta> <360>\pi r^2$
Если угол $\theta$ в радианах, тогда площадь, тогда площадь = $\frac<\theta> <2>r^2$

Если длина дуги составляет $\theta$ градуов или радиан, то значение центрального угла также $\theta$ (градусов или радиан).

Если вы знаете длину дуги (в дюймах, ярдах, футах, сантиметрах, метрах . ) вы можете найти значение её соответствующего центрального угла ($\theta$) по формуле:

Вписанный угол это угол с вершиной на окружности и со сторонами, которые содержат хорды окружности.
На рисунке, угол APB это вписанный угол.

Пример:
$\w > $\angle APB = \frac<84> <2>= 42^\circ$

Случай 1: два секущие пересекаются внутри окружности.

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны $\frac<1><2>(60^\circ + 50^\circ)=55^\circ$

Случай 2: две секущие пересекаются вне окружности.

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

На рисунке дуга AB=80° и дуги CD=30°.
$\angle ABC = \frac<1><2>(80 – 30) = \frac<1> <2>\cdot 50 = 25^\circ$


Если две хорды пересекаются внутри окружности, как на рисунке выше, тогда:

источник

Установлено, что какой бы ни была окружность, отношение ее длины к диаметру является постоянным числом. Это число принято обозначать буквой π ( читается – “пи” ) .
Обозначим длину окружности буквой , а ее диаметр буквой d и запишем формулу

Число π приблизительно равно 3.14
Более точное его значение π = 3,1415926535897932

Исходя из формулы выше, выведем, чему равна окружность, если известен диаметр ( d )

Если известен радиус ( r ) , то формула длины окружности будет выглядеть так:

Площадь круга вычисляется по формуле
где: S — площадь круга r — радиус

Выберите длину окружности с радиусом 3 см :

1) 6,28 см ; 2) 9,42 см ; 3) 18,84 см . Неверно. Не кликай на пустое поле. Неверно. Неверно. Выберите площадь круга с радиусом 3 см :

1) 28,26 с м 2 ; 2) 28,76 с м 2 ; 3) 56,52 с м 2 . Неверно. Не кликай на пустое поле. Выберите радиус окружности, длина которой 6,28 см :

1) 3 см ; 2) 2 см ; 3) 1 см . Неверно. Неверно. Неверно. Не кликай на пустое поле. Неверно. Неверно. Выберите радиус круга , площадь которого 12,56 с м 2 :

1) 2 см ; 2) 3 см ; 3) 4 см . Неверно. Не кликай на пустое поле. Выберите длину окружности с радиусом 5,5 см :

1) 17,27 см ; 2) 34,54 см ; 3) 69,08 см. Неверно. Неверно. Неверно. Не кликай на пустое поле. Неверно. Выберите площадь круга с радиусом 4 см :

1) 50,24 с м ; 2) 50,24 с м 2 ; 3) 100,48 с м 2 ; Неверно. Неверно. Не кликай на пустое поле. Неверно. Площадь измеряется в с м 2 . Нeвeрнo. Задание выполнено. Неверно.

Найдите длину окружности, если значение числа π взять равным

22
7

,
а ее радиус:

а) r = 1

1
6

см ; l = см ;

б) r = 2

4
5

м ; l = м .

Найдите радиус окружности, если значение числа π взять равным

22
7

,
а ее длину:

а) l = 5

1
7

мм ; r = мм ;

б) l = 6

6
7

см ; r = см .

Выберите длину окружности с диаметром 4 см :

1) 25,12 см ; 2) 12,56 см ; 3) 9,42 см . Неверно. Не кликай на пустое поле. Неверно. Выберите площадь круга с диаметром 2 см :

1) 3,14 с м 2 ; 2) 6,28 с м 2 ; 3) 12,56 с м 2 . Неверно. Неверно. Не кликай на пустое поле. Выберите диаметр окружности, длина которой 6,28 см :

1) 1 см ; 2) 2 см ; 3) 4 см . Неверно. Неверно. Неверно. Не кликай на пустое поле. Неверно. Не путайте диаметр и радиус. Выберите диаметр круга , площадь которого 12,56 с м 2 :

1) 2 см ; 2) 4 см ; 3) 6 см . Неверно. Неверно. Не кликай на пустое поле. Неверно. Не путайте диаметр и радиус. Выберите длину окружности с диаметром 11 см :

1) 17,27 см ; 2) 34,54 см ; 3) 69,08 см. Неверно. Неверно. Не кликай на пустое поле. Неверно. Выберите площадь круга с диаметром 8 см :

источник

Adblock
detector