Меню Рубрики

Что называется значением числового выражения

При изучении темы числовые, буквенные выражения и выражения с переменными необходимо уделить внимание понятию значение выражения. В этой статье мы ответим на вопрос, что такое значение числового выражения, и что называют значением буквенного выражения и выражения с переменными при выбранных значениях переменных. Для разъяснения этих определений приведем примеры.

Знакомство с числовыми выражениями начинается чуть ли не с первых уроков математики в школе. Практически сразу вводится и понятие «значение числового выражения». Его относят к выражениям, составленным из чисел, соединенных знаками арифметических действий (+, −, ·, :). Дадим соответствующее определение.

Значение числового выражения – это число, которое получается после выполнения всех действий в исходном числовом выражении.

Для примера рассмотрим числовое выражение 1+2 . Выполнив сложение натуральных чисел, получаем число 3 , оно и является значением числового выражения 1+2 .

Часто в словосочетании «значение числового выражения» слово «числового» опускают, и говорят просто «значение выражения», так как все равно понятно, о значении какого выражения идет речь.

Данное выше определение значения выражения распространяется и на числовые выражения более сложного вида, которые изучаются в старших классах. Здесь нужно заметить, что можно столкнуться с числовыми выражениями, указать значения которых нет возможности. Это связано с тем, что в некоторых выражениях невозможно выполнить записанные действия. Например, деление на нуль не определено, поэтому мы не можем указать значение выражения 3:(2−2) . Подобные числовые выражения называют выражениями, не имеющими смысла.

Часто на практике интерес представляет не столько числовое выражение, как его значение. То есть, встает задача, заключающаяся в определении значения данного выражения. При этом обычно говорят, что нужно найти значение выражения. В указанной статье подробно разобран процесс нахождения значения числовых выражений различного вида, и рассмотрена масса примеров с детальными описаниями решений.

Помимо числовых выражений изучают буквенные выражения, то есть выражения, в записи которых вместе с числами присутствует одна или несколько букв. Буквы в буквенном выражении могут обозначать различные числа, и если буквы заменить этими числами, то буквенное выражение станет числовым.

Числа, которыми заменяют буквы в буквенном выражении, называют значениями этих букв, а значение полученного при этом числового выражения называют значением буквенного выражения при данных значениях букв.

Итак, для буквенных выражений говорят не просто о значении буквенного выражения, а о значении буквенного выражения при данных (заданных, указанных и т.п.) значениях букв.

Приведем пример. Возьмем буквенное выражение 2·a+b . Пусть заданы значения букв a и b , например, a=1 и b=6 . Заменив буквы в исходном выражении их значениями, получим числовое выражение вида 2·1+6 , его значение равно 8 . Таким образом, число 8 есть значение буквенного выражения 2·a+b при заданных значениях букв a=1 и b=6 . Если бы были даны другие значения букв, то мы бы получили значение буквенного выражения для этих значений букв. Например, при a=5 и b=1 имеем значение 2·5+1=11 .

В старших классах при изучении алгебры буквам в буквенных выражениях позволяют принимать различные значения, такие буквы называют переменными, а буквенные выражения – выражениями с переменными. Для этих выражений вводится понятие значения выражения с переменными при выбранных значениях переменных. Разберемся, что это такое.

Читайте также:  Как получить справку 3ндфл если официально не работаю

Значением выражения с переменными при выбранных значениях переменных называется значение числового выражения, которое получается после подстановки выбранных значений переменных в исходное выражение.

Поясним озвученное определение на примере. Рассмотрим выражение с переменными x и y вида 3·x·y+y . Возьмем x=2 и y=4 , подставим эти значения переменных в исходное выражение, получаем числовое выражение 3·2·4+4 . Вычислим значение этого выражения: 3·2·4+4=24+4=28 . Найденное значение 28 является значением исходного выражения с переменными 3·x·y+y при выбранных значениях переменных x=2 и y=4 .

Если выбрать другие значения переменных, например, x=5 и y=0 , то этим выбранным значениям переменных будет соответствовать значение выражения с переменными, равное 3·5·0+0=0 .

Можно отметить, что иногда для различных выбранных значений переменных могут получаться равные значения выражения. К примеру, для x=9 и y=1 значение выражения 3·x·y+y равно 28 (так как 3·9·1+1=27+1=28 ), а выше мы показали, что такое же значение это выражение с переменными имеет при x=2 и y=4 .

Значения переменных можно выбирать из соответствующих им областей допустимых значений. В противном случае при подстановке в исходное выражение значений этих переменных получится числовое выражение, не имеющее смысла. К примеру, если выбрать x=0 , и подставить это значение в выражение 1/x , то получится числовое выражение 1/0 , которое не имеет смысла, так как деление на нуль не определено.

Остается лишь добавить, что существуют выражения с переменными, значения которых не зависят от значений входящих в них переменных. Например, значение выражения с переменной x вида 2+x−x не зависит от значения этой переменной, оно равно 2 при любом выбранном значении переменной x из области ее допустимых значений, которая в данном случае является множеством всех действительных чисел.

источник

Числовое выражение – это любая запись из чисел, знаков арифметических действий и скобок. Числовое выражение может состоять и просто из одного числа. Напомним, что основными арифметическими действиями являются «сложение», «вычитание», «умножение» и «деление». Этим действиям соответствуют знаки «+», «-», «∙», «:».

Конечно же, чтобы у нас получилось числовое выражение, запись из чисел и арифметических знаков должна быть осмысленной. Так, например, такую запись 5 : + ∙ нельзя назвать числовым выражением, так как это случайный набор символов, не имеющий смысла. Напротив, 5 + 8 ∙ 9 — уже настоящее числовое выражение.

Значение числового выражения.

Сразу скажем, что если мы выполним действия указанные в числовом выражении, то в результате мы получим число. Это число называется значением числового выражения.

Попробуем вычислить, что у нас получится в результате выполнения действий нашего примера. Согласно порядку выполнения арифметических действий, сначала выполним операцию умножения. Умножим 8 на 9. Получим 72. Теперь сложим 72 и 5. Получим 77.
Итак, 77 – значение числового выражения 5 + 8 ∙ 9.

Числовое равенство.

Можно это записать таким образом: 5 + 8 ∙ 9 = 77. Здесь мы впервые использовали знак «=» («Равно»). Такая запись, при которой два числовых выражения разделены знаком «=», называется числовым равенством. При этом, если значения левой и правой части равенства совпадают, то равенство называют верным. 5 + 8 ∙ 9 = 77 – верное равенство.
Если же мы напишем 5 + 8 ∙ 9 = 100, то это уже будет неверное равенство, так как значения левой и правой части данного равенства уже не совпадают.

Читайте также:  Как почистить зубы маленькому ребенку

Следует отметить, что в числовом выражении мы также можем использовать скобки. Скобки влияют на порядок выполнения действий. Так, например, видоизменим наш пример, добавив скобки: (5 + 8) ∙ 9. Теперь сначала нужно сложить 5 и 8. Получим 13. А затем умножить 13 на 9. Получим 117. Таким образом, (5 + 8) ∙ 9 = 117.
117 – значение числового выражения (5 + 8 ) ∙ 9.

Как прочитать числовое выражение?

Чтобы правильно прочитать выражение, нужно определить какое именно действие выполняется последним для вычисления значения данного числового выражения. Так, если последнее действие вычитание, то выражение называют «разностью». Соответственно, если последнее действие сумма — «суммой», деление – «частным», умножение – «произведением», возведение в степень – «степенью».

Например, числовое выражение (1+5)(10-3) читается так: «произведение суммы чисел 1 и 5 на разность чисел 10 и 3».

Примеры числовых выражений.

Приведем пример более сложного числового выражения:

В данном числовом выражении используются простые числа, обыкновенные и десятичные дроби. Также используются знаки сложения, вычитания, умножения и деления. Черта дроби также заменяет знак деления. При кажущейся сложности, найти значение данного числового выражения довольно просто. Главное уметь выполнять операции с дробями, а также внимательно и аккуратно делать вычисления, соблюдая порядок выполнения действий.

В скобках у нас выражение $\frac<1><4>+3,75$ . Преобразуем десятичную дробь 3,75 в обыкновенную.

Далее, в числителе дроби \[\frac<1,25+3,47+4,75-1,47><4\centerdot 0,5>\] у нас выражение 1,25+3,47+4,75-1,47. Для упрощения данного выражения применим переместительный закон сложения, который гласит: «От перемены мест слагаемых сумма не изменяется». То есть, 1,25+3,47+4,75-1,47=1,25+4,75+3,47-1,47=6+2=8.

В знаменателе дроби выражение $4\centerdot 0,5=4\centerdot \frac<1><2>=4:2=2$

Когда числовые выражения не имеют смысла?

Рассмотрим еще один пример. В знаменателе дроби $\frac<5+5><3\centerdot 3-9>$ значением выражения $3\centerdot 3-9$ является 0. А, как мы знаем, деление на нуль невозможно. Следовательно, у дроби $\frac<5+5><3\centerdot 3-9>$ нет значения. Про числовые выражения, у которых нет значения, говорят, что они «не имеют смысла».

Если мы в числовом выражении помимо чисел будем использовать буквы, то у нас получится уже алгебраическое выражение.

источник

В процессе разбора тем о числовых, буквенных выражениях и выражениях с переменными следует обратить внимание на понятие значение выражения. Ниже дадим определение этому термину, рассмотрим примеры.

Мы знакомимся с числовыми выражениями с самого начала школьного обучения. Да и почти сразу начинает использоваться понятие «значение числового выражения». Так обозначают выражения, составляющие которого – числа, соединяемые знаками арифметических действий: плюс, минус, умножить, разделить.

Значение числового выражения – это конечное число, получаемое в результате выполнения заданных действий в исходном числовом выражении.

Например, простейшее числовое выражение 2 + 3 . Оно задает необходимость выполнить сложение натуральных чисел, в результате чего получается число 5 , которое и будет служить значением числового выражения 2 + 3 .

Зачастую в словосочетании «значение числового выражения» слово «числовое» не употребляют, поскольку в любом случае понятно, значение какого выражения рассматривается.

Читайте также:  Как вырастить тую из ветки в домашних условиях

Определение, которое мы дали выше, верно для числовых выражений и более сложной структуры, изучаемых в старших классах. Также нужно сказать о том, что возможно встретить такие числовые выражения, значение которых указать нет возможности: в некоторых выражениях задаются действия, которые нельзя выполнить. К примеру, деление на нуль не определено, а значит указать значение выражения, к примеру, 5 : ( 9 — 9 ) невозможно. Такие числовые выражения называют выражениями, не имеющими смысла.

В основном интерес вызывает не само числовое выражение, а его значение. Практически всегда существует задача по нахождению значения заданного выражения, которая так и обозначается: «найти значение выражения». В соответствующей статье можно детально изучить сам процесс нахождения значения числовых выражения разного рода с примерами.

Кроме числовых, интерес представляют и буквенные выражения – те выражения, составляющими которого являются, в том числе, одна или несколько букв. Буквы в буквенном выражении обозначают разные числа, и при замене букв на числа получается числовое выражение.

Значения букв – числа, которые заменяют эти буквы в буквенном выражении. Тогда значение буквенного выражения при заданных значениях букв – это значение полученного числового выражения.

Таким образом, речь идет не о значении буквенного выражения, как такового, а о его значении, когда заданы (определены) конкретные значения букв.

Например, рассмотрим буквенное выражение 3 · x + y . Допустим также, что заданы некоторые значения используемых букв: x = 2 , y = 1 . Заменим буквы на заданные их значения, получим числовое выражение 3 · 2 + 1 . Значение этого числового выражения равно 7 . Т.е. 7 – это значение исходного буквенного выражения при определенных значениях букв. Могли быть заданы и другие значения букв, тогда было бы получено иное числовое выражение и, в конечном счете, иное значение буквенного выражения.

В программе алгебры буквы в буквенном выражении могут принимать разнообразные значения, тогда буквы называют переменными, а буквенные выражения – выражениями с переменными. Логично следует введение понятия значения выражений при выбранных значениях переменных.

Значение выражения с переменными при выбранных значениях переменных – это значение числового выражения, полученное при подстановке конкретных выбранных значений переменных в заданное выражение.

Приведем пример. Пусть задано выражение 4 · a · b + b . Зададим переменные: a = 3 , b = 7 и подставим их в исходное выражение: 4 · 3 · 7 + 7 . Произведем вычисление: 4 · 3 · 7 + 7 = 84 + 7 = 91 .

Определенное значение в виде числа 91 – это значение исходного выражения с переменными 4 · a · b + b при выбранных значениях переменных a = 3 , b = 7 .

Возможен вариант, когда выбранные переменные –различны, а значение исходного выражения при этих переменных одинаково.

Значения переменных возможно задать из областей допустимых значений, которые им соответствуют, поскольку в ином случае, подставив значения, не принадлежащие области допустимых значений, можно получить числовое выражение, не имеющее смысла.

Добавим напоследок, что имеют также место выражения с переменными, значения которых не имеют зависимости от входящих в них переменных. К примеру, значение выражения 5 + х – х не зависит от значения переменной x , оно в любом случае будет равно 5 (при любом выбранном значении переменной из области ее допустимых значений).

источник