Меню

Число в периоде как перевести в дробь

Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:

Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби, и как с ними работать.

Давайте попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в пункте деление меньшего числа на большее. Продвинутый уровень.

Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется снова и снова. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет длиться бесконечно, поэтому разумнее будет остановиться на достигнутом.

Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять и из одной, как в нашем примере.

В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают целую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).

В нашем примере цифра, которая повторяется это цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:

Читается как «ноль целых и три в периоде»

Пример 2. Разделить 5 на 11

Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:

Читается как «ноль целых и сорок пять в периоде»

Пример 3. Разделить 15 на 13

Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:

Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».

Пример 4. Разделить 471 на 900

В этом примере период начинается не сразу, а после цифр 5 и 2. Сокращённая запись для данной периодической дроби будет выглядеть так:

Читается как: «ноль целых пятьдесят две сотых и три в периоде».

Периодические дроби бывают двух видов: чистые и смешанные.

Если в периодической дроби период начинается сразу же после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

Видно, что в этих дробях период начинается сразу же после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смешанной. Например, следующие периодические дроби являются смешанными:

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.

Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нужного разряда.

Например округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33

Округлим периодическую дробь 6,31 (6) до разряда тысячных.

Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317

Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для нашего же развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.

Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, такую дробь называют чистой.

Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.

В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.

Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби. Итак, записываем в числителе период дроби 0,(3) то есть тройку:

А в знаменатель нужно записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).

В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:

Полученную дробь можно сократить на 3, тогда получим следующее:

Получили обыкновенную дробь .

Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается

Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.

Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:

А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).

В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:

Полученную дробь можно сократить эту дробь на 9, тогда получим следующее:

Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается

Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.

В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Итак, записываем в числителе разность:

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)

В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Получили выражение, которое вычисляется легко:

Получили ответ

Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается

Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Итак, записываем в числителе разность:

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)

В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Получили выражение, которое вычисляется легко:

Получили ответ

Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

источник

Некоторые обыкновенные дроби можно представить в виде конечных десятичных дробей, например:

,

,

.
Но некоторые дроби невозможно представить конечной десятичной дробью, например: , , .

Как видно, при делении одного на три все время образуется остаток 1, и в частном получается 3. Так как это происходит бесконечно, то дробь и называется бесконечной. В этой дроби остаток всегда одинаковый (1), то есть частное (3) повторяется периодически, и говорят, что это бесконечная периодическая дробь. Это частное, которое все время повторяется, называют периодом, и читают дробь так: “ноль целых и три в периоде”, записывают кратко так: .

Существуют и такие дроби, где остаток от деления все время получается разным, и частное разное, и поэтому все цифры, образующие такое число, разные (число ). Это непериодическая бесконечная дробь.

Иногда может потребоваться выполнить представление такой вот периодической дроби дробью обыкновенной. Для того, чтобы научиться это делать, посмотрим, как организована бесконечная периодическая дробь:

Дробь может содержать целую часть (у нас – 3), цифры после запятой, которые не повторяются (у нас их нет), и повторяющуюся цифру или группу цифр (у нас 45), которая называется периодом.

– здесь целая часть 5, неповторяющаяся цифра после запятой одна – 0, и период состоит из шести цифр – 615384.

Теперь можем приступать к трансформации бесконечной дроби в обыкновенную!

Читайте также:  Продукты выводящие сахар из организма

1. Посчитать, сколько цифр в периоде и после запятой, но до него.

2. Записать натуральным числом все цифры после запятой, включая период.

3. Записать натуральным числом все цифры после запятой до периода.

4. Записать разность этих двух натуральных чисел.

5. Разделить эту разность на число, в котором столько девяток, сколько цифр в периоде нашей дроби и столько нулей, сколько цифр до периода. Полученную дробь сократить – это дробная часть числа.

6. Не забыть про целую часть числа! Ее надо добавить к полученной дробной части.

Например, нужно представить бесконечную дробь в виде смешанного числа.

1. В периоде 2 цифры (72), до периода цифр нет (0).

2. Записываем период натуральным числом – 72. Записываем натуральным числом цифры до периода – 0.

3. Считаем разность этих чисел: .

4. Делим эту разность на число: 99 – в нем две девятки (по числу цифр периода) и нет нулей, так как до периода в числе никаких цифр нет: – это дробная часть.

5. Добавляем целую часть к дробной и получаем результат:

Представим в виде смешанного числа дробь

1. В периоде 1 цифра (6), до периода три цифры (791).

2. Записываем цифры после запятой, включая период, натуральным числом – 7916. Записываем натуральным числом цифры до периода – 791.

3. Считаем разность этих чисел: .

4. Делим эту разность на число 9000 – в нем одна девятка (по числу цифр периода) и три нуля, так как до периода в числе три цифры: – это дробная часть.

5. Добавляем целую часть к дробной и получаем результат: .

Ну и в последний раз тренируемся:

Представим в виде обыкновенной дроби число

1. В периоде 6 цифр (428571), до периода одна цифра (6).

2. Записываем цифры после запятой, включая период, натуральным числом – 6428571. Записываем натуральным числом цифры до периода – 6.

3. Считаем разность этих чисел: .

4. Делим эту разность на число 9999990 – в нем шесть девяток (по числу цифр периода) и один ноль, так как до периода в числе одна цифра: – это результат, так как у числа не было целой части.

источник

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

— это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется дроби, а количество цифр в этом наборе — . Остальной отрезок значащей части, который не повторяется, называется .

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».

Рассмотрим обыкновенную дробь Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным — см. урок «Десятичные дроби». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть, если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться.

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Как видим, остатки повторяются. Запишем дробь в «правильном» виде:

Записываем в нормальном виде:

Рассмотрим периодическую десятичную дробь Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет
  2. Найдите значение выражения Это равносильно сдвигу десятичной точки на полный период вправо — см. урок «Умножение и деление десятичных дробей»;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь;
  4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

В скобках содержится лишь одна цифра, поэтому период Далее умножаем эту дробь Имеем:

Вычитаем исходную дробь и решаем уравнение:

10 X − X = 96,666 . − 9,666 . = 96 − 9 = 87;
9 X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак,

Период k = 2, поэтому умножаем все

100 X = 100 · 32,393939 . = 3239,3939 .

Снова вычитаем исходную дробь и решаем уравнение:

100 X − X =
99 X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

10 X = 10 · 0,30555 . = 3,05555 .
10 X − X =
9 X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒
10 000 X = 10 000 · 0,2475 2475 = 2475,2475 .
10 000 X − X = 2475,2475 . − 0,2475 2475 . = 2475;
9999 X = 2475;
X = 2475 : 9999 = 25/101.

источник

Говоря сухим математическим языком, дробь — это число, которое представляется в виде части от единицы. Дроби широко используются в жизни человека: при помощи дробных чисел мы указываем пропорции в кулинарных рецептах, выставляем десятичные оценки на соревнованиях или используем их для подсчета скидок в магазинах.

Существует минимум две формы записи одного дробного числа: в десятичной форме или в виде обыкновенной дроби. В десятичной форме числа выглядят как 0,5; 0,25 или 1,375. Любое из этих значений мы может представить в виде обыкновенной дроби:

И если 0,5 и 0,25 мы без проблем конвертируем из обыкновенной дроби в десятичную и обратно, то в случае с числом 1,375 все неочевидно. Как быстро преобразовать любое десятичное число в дробь? Существует три простых способа.

Самый простой алгоритм подразумевает умножение числа на 10 до тех пор, пока из числителя не исчезнет запятая. Такое преобразование осуществляется в три шага:

Шаг 1: Для начала десятичное число запишем в виде дроби «число/1», то есть мы получим 0,5/1; 0,25/1 и 1,375/1.

Шаг 2: После этого умножим числитель и знаменатель новых дробей до тех пор, пока из числителей не исчезнет запятая:

  • 0,5/1 = 5/10;
  • 0,25/1 = 2,5/10 = 25/100;
  • 1,375/1 = 13,75/10 = 137,5/100 = 1375/1000.

Шаг 3: Сокращаем полученные дроби до удобоваримого вида:

  • 5/10 = 1 × 5 / 2 × 5 = 1/2;
  • 25/100 = 1 × 25 / 4 × 25 = 1/4;
  • 1375/1000 = 11 × 125 / 8 × 125 = 11/8.

Число 1,375 пришлось три раза умножать на 10, что уже не очень удобно, а что нам придется делать в случае, если понадобится преобразовать число 0,000625? В этой ситуации используем следующий способ преобразования дробей.

Первый способ детально описывает алгоритм «удаления» запятой из десятичной дроби, однако мы можем упростить этот процесс. И вновь мы выполняем три шага.

Шаг 1: Считаем, сколько цифр стоит после запятой. К примеру, у числа 1,375 таких цифр три, а у 0,000625 — шесть. Это количество мы обозначим буквой n.

Шаг 2: Теперь нам достаточно представить дробь в виде C/10 n , где C – это значимые цифры дроби (без нулей, если они есть), а n – количество цифр после запятой. К примеру:

  • для числа 1,375 C = 1375, n = 3, итоговая дробь согласно формуле 1375/10 3 = 1375/1000;
  • для числа 0,000625 C = 625, n = 6, итоговая дробь согласно формуле 625/10 6 = 625/1000000.

По сути, 10 n – это 1 с количеством нулей, равным n, поэтому вам не нужно заморачиваться с возведением десятки в степень — достаточно указать 1 с n нулей. После этого столь богатую на нули дробь желательно сократить.

Шаг 3: Сокращаем нули и получаем итоговый результат:

  • 1375/1000 = 11 × 125 / 8 × 125 = 11/8;
  • 625/1000000 = 1 × 625/ 1600 × 625 = 1/1600.

Дробь 11/8 — это неправильная дробь, так как числитель у нее больше знаменателя, а значит, мы можем выделить целую часть. В этой ситуации мы вычитаем из 11/8 целую часть 8/8 и получаем остаток 3/8, следовательно, дробь выглядит как 1 и 3/8.

Для тех, кто умеет правильно читать десятичные дроби, проще всего их преобразовать на слух. Если вы читаете 0,025 не как «ноль, ноль, двадцать пять», а как «25 тысячных», то у вас не будет никаких проблем с конвертацией десятичных чисел в обыкновенные дроби.

Читайте также:  Что такое педаль в машине

Таким образом, правильное прочтение десятичного числа позволяет сразу же записать ее как обыкновенную дробь и сократить в случае необходимости.

На первый взгляд обыкновенные дроби практически не используются в быту или на работе и трудно представить ситуацию, когда вам понадобится перевести десятичную дробь в обычную за пределами школьных задач. Рассмотрим пару примеров.

Итак, вы работаете в кондитерском магазине и продаете халву на развес. Для простоты реализации продукта вы разделяете халву на килограммовые брикеты, однако мало кто из покупателей готов приобрести целый килограмм. Поэтому вам приходится каждый раз разделять лакомство на кусочки. И если очередной покупатель попросит у вас 0,4 кг халвы, вы без проблем продадите ему нужную порцию.

К примеру, необходимо сделать 12 % раствор для покраски модели в нужный вам оттенок. Для этого нужно смешать краску и растворитель, но как правильно это сделать? 12 % — это десятичная дробь 0,12. Преобразовываем число в обыкновенную дробь и получаем:

Зная дроби, вы сможете правильно смешать компоненты и получить нужный цвет.

Дроби широко используются в повседневной жизни, поэтому если вам часто необходимо преобразовывать десятичные значения в обыкновенные дроби, вам пригодится онлайн-калькулятор, при помощи которого можно мгновенно получить результат в виде уже сокращенной дроби.

источник

В этой статье мы разберем, как осуществляется перевод обыкновенных дробей в десятичные дроби, а также рассмотрим обратный процесс – перевод десятичных дробей в обыкновенные дроби. Здесь мы озвучим правила обращения дробей и приведем подробные решения характерных примеров.

Обозначим последовательность, в которой мы будем разбираться с переводом обыкновенных дробей в десятичные дроби.

Сначала мы рассмотрим, как обыкновенные дроби со знаменателями 10, 100, 1 000, … представить в виде десятичных дробей. Это объясняется тем, что десятичные дроби по сути являются компактной формой записи обыкновенных дробей со знаменателями 10, 100, … .

После этого мы пойдем дальше и покажем, как любую обыкновенную дробь (не только со знаменателями 10, 100, … ) записать в виде десятичной дроби. При таком обращении обыкновенных дробей получаются как конечные десятичные дроби, так и бесконечные периодические десятичные дроби.

Теперь обо всем по порядку.

Некоторые правильные обыкновенные дроби перед переводом в десятичные дроби нуждаются в «предварительной подготовке». Это касается обыкновенных дробей, количество цифр в числителе которых меньше, чем количество нулей в знаменателе. Например, обыкновенную дробь 2/100 нужно предварительно подготовить к переводу в десятичную дробь, а дробь 9/10 в подготовке не нуждается.

«Предварительная подготовка» правильных обыкновенных дробей к переводу в десятичные дроби заключается в дописывании слева в числителе такого количества нулей, чтобы там общее количество цифр стало равно количеству нулей в знаменателе. Например, дробь после дописывания нулей будет иметь вид .

После подготовки правильной обыкновенной дроби можно приступать к ее обращению в десятичную дробь.

Дадим правило перевода правильной обыкновенной дроби со знаменателем 10, или 100, или 1 000, … в десятичную дробь. Оно состоит из трех шагов:

  • записываем 0 ;
  • после него ставим десятичную запятую;
  • записываем число из числителя (вместе с дописанными нулями, если мы их дописывали).

Рассмотрим применение этого правила при решении примеров.

Переведите правильную обыкновенную дробь 37/100 в десятичную.

В знаменателе находится число 100 , в записи которого два нуля. В числителе находится число 37 , в его записи две цифры, следовательно, эта дробь не нуждается в подготовке к переводу в десятичную дробь.

Теперь записываем 0 , ставим десятичную запятую, и записываем число 37 из числителя, при этом получаем десятичную дробь 0,37 .

Для закрепления навыков перевода правильных обыкновенных дробей с числителями 10, 100, … в десятичные дроби разберем решение еще одного примера.

Запишите правильную дробь 107/10 000 000 в виде десятичной дроби.

Количество цифр в числителе равно 3 , а количество нулей в знаменателе равно 7 , поэтому данная обыкновенная дробь нуждается в подготовке к переводу в десятичную. Нам нужно дописать 7-3=4 нуля слева в числителе, чтобы общее количество цифр там стало равно количеству нулей в знаменателе. Получаем .

Осталось составить нужную десятичную дробь. Для этого, во-первых, записываем 0 , во-вторых, ставим запятую, в-третьих, записываем число из числителя вместе с нулями 0000107 , в итоге имеем десятичную дробь 0,0000107 .

Неправильные обыкновенные дроби не нуждаются в подготовке при переводе в десятичные дроби. Следует придерживаться следующего правила перевода неправильных обыкновенных дробей со знаменателями 10, 100, … в десятичные дроби:

  • записываем число из числителя;
  • отделяем десятичной запятой столько цифр справа, сколько нулей в знаменателе исходной дроби.

Разберем применение этого правила при решении примера.

Переведите неправильную обыкновенную дробь 56 888 038 009/100 000 в десятичную дробь.

Во-первых, записываем число из числителя 56888038009, во-вторых, отделяем десятичной запятой 5 цифр справа, так как в знаменателе исходной дроби 5 нулей. В итоге имеем десятичную дробь 568 880,38009 .

Для обращения в десятичную дробь смешанного числа, знаменателем дробной части которого является число 10 , или 100 , или 1 000, … , можно выполнить перевод смешанного числа в неправильную обыкновенную дробь, после чего полученную дробь обратить в десятичную дробь. Но можно пользоваться и следующим правилом перевода смешанных чисел со знаменателем дробной части 10, или 100, или 1 000, … в десятичные дроби:

  • при необходимости выполняем «предварительную подготовку» дробной части исходного смешанного числа, дописав необходимое количество нулей слева в числителе;
  • записываем целую часть исходного смешанного числа;
  • ставим десятичную запятую;
  • записываем число из числителя вместе с дописанными нулями.

Рассмотрим пример, при решении которого выполним все необходимые шаги для представления смешанного числа в виде десятичной дроби.

Переведите смешанное число в десятичную дробь.

В знаменателе дробной части 4 нуля, в числителе же находится число 17 , состоящее из 2 цифр, поэтому, нам нужно дописать два нуля слева в числителе, чтобы там число знаков стало равно числу нулей в знаменателе. Выполнив это, в числителе окажется 0017 .

Теперь записываем целую часть исходного числа, то есть, число 23 , ставим десятичную запятую, после которой записываем число из числителя вместе с дописанными нулями, то есть, 0017 , при этом получаем искомую десятичную дробь 23,0017 .

Запишем все решение кратко: .

Несомненно, можно было сначала представить смешанное число в виде неправильной дроби, после чего перевести ее в десятичную дробь. При таком подходе решение выглядит так: .

В десятичную дробь можно перевести не только обыкновенные дроби со знаменателями 10, 100, … , но обыкновенные дроби с другими знаменателями. Сейчас мы разберемся, как это делается.

В некоторых случаях исходная обыкновенная дробь легко приводится к одному из знаменателей 10 , или 100 , или 1 000, … (смотрите приведение обыкновенной дроби к новому знаменателю), после чего не составляет труда полученную дробь представить в виде десятичной дроби. Например, очевидно, что дробь 2/5 можно привести к дроби со знаменателем 10 , для этого нужно числитель и знаменатель умножить на 2 , что даст дробь 4/10 , которая по правилам, разобранным в предыдущем пункте, легко переводится в десятичную дробь 0,4 .

В остальных случаях приходится использовать другой способ перевода обыкновенной дроби в десятичную, к рассмотрению которого мы и переходим.

Для обращения обыкновенной дроби в десятичную дробь выполняется деление числителя дроби на знаменатель, числитель предварительно заменяется равной ему десятичной дробью с любым количеством нулей после десятичной запятой (об этом мы говорили в разделе равные и неравные десятичные дроби). При этом деление выполняется так же, как деление столбиком натуральных чисел, а в частном ставится десятичная запятая, когда заканчивается деление целой части делимого. Все это станет понятно из решений примеров, приведенных ниже примеров.

Переведите обыкновенную дробь 621/4 в десятичную дробь.

Число в числителе 621 представим в виде десятичной дроби, добавив десятичную запятую и несколько нулей после нее. Для начала допишем 2 цифры 0 , позже, при необходимости, мы всегда можем добавить еще нулей. Итак, имеем 621,00 .

Теперь выполним деление столбиком числа 621,000 на 4 . Первые три шага ничем не отличаются от деления столбиком натуральных чисел, после них приходим к следующей картине:

Так мы добрались до десятичной запятой в делимом, а остаток при этом отличен от нуля. В этом случае в частном ставим десятичную запятую, и продолжаем деление столбиком, не обращая внимания на запятые:

На этом деление закончено, а в результате мы получили десятичную дробь 155,25 , которая соответствует исходной обыкновенной дроби.

Для закрепления материала рассмотрим решение еще одного примера.

Переведите обыкновенную дробь 21/800 в десятичную дробь.

Для перевода данной обыкновенной дроби в десятичную, выполним деление столбиком десятичной дроби 21,000… на 800 . Нам после первого же шага придется поставить десятичную запятую в частном, после чего продолжить деление:

Наконец-то мы получили остаток 0 , на этом перевод обыкновенной дроби 21/400 в десятичную дробь закончен, и мы пришли к десятичной дроби 0,02625 .

Может случиться, что при делении числителя на знаменатель обыкновенной дроби мы так и не получим в остатке 0 . В этих случаях деление можно продолжать сколь угодно долго. Однако, начиная с некоторого шага, остатки начитают периодически повторяться, при этом повторяются и цифры в частном. Это означает, что исходная обыкновенная дробь переводится в бесконечную периодическую десятичную дробь. Покажем это на примере.

Запишите обыкновенную дробь 19/44 в виде десятичной дроби.

Для перевода обыкновенной дроби в десятичную выполним деление столбиком:

Уже сейчас видно, что при делении начали повторяться остатки 8 и 36 , при этом в частном повторяются цифры 1 и 8 . Таким образом, исходная обыкновенная дробь 19/44 переводится в периодическую десятичную дробь 0,43181818…=0,43(18) .

Читайте также:  Персики в сиропе как в магазине

В заключение этого пункта разберемся, какие обыкновенные дроби можно перевести в конечные десятичные дроби, а какие – только в периодические.

Пусть перед нами находится несократимая обыкновенная дробь (если дробь сократимая, то предварительно выполняем сокращение дроби), и нам нужно выяснить, в какую десятичную дробь ее можно перевести – в конечную или периодическую.

Понятно, что если обыкновенную дробь можно привести к одному из знаменателей 10, 100, 1 000, … , то полученную дробь легко перевести в конечную десятичную дробь по правилам, разобранным в предыдущем пункте. Но к знаменателям 10, 100, 1 000 и т.д. приводятся далеко не все обыкновенные дроби. К таким знаменателям можно привести лишь дроби, знаменатели которых являются делителями хотя бы одного из чисел 10, 100, … А какие числа могут быть делителями 10, 100, … ? Ответить на этот вопрос нам позволят разложения на простые множители чисел 10, 100, … , а они таковы: 10=2·5 , 100=2·2·5·5 , 1 000=2·2·2·5·5·5, … . Отсюда следует, что делителями 10, 100, 1 000 и т.д. могут быть лишь числа, разложения которых на простые множители содержат лишь числа 2 и (или) 5 .

Теперь мы можем сделать общий вывод о переводе обыкновенных дробей в десятичные дроби:

  • если в разложении знаменателя на простые множители присутствуют лишь числа 2 и (или) 5 , то эту дробь можно перевести в конечную десятичную дробь;
  • если кроме двое и пятерок в разложении знаменателя присутствуют другие простые числа, то эта дробь переводится к бесконечную десятичную периодическую дробь.

Не выполняя перевод обыкновенных дробей в десятичные, скажите, какие из дробей 47/20 , 7/12 , 21/56 , 31/17 можно перевести в конечную десятичную дробь, а какие – только в периодическую.

Разложение на простые множители знаменателя дроби 47/20 имеет вид 20=2·2·5 . В этом разложении присутствуют лишь двойки и пятерки, поэтому эта дробь может быть приведена к одному из знаменателей 10, 100, 1 000, … (в этом примере к знаменателю 100 ), следовательно, может быть переведена в конечную десятичную дробь.

Разложение на простые множители знаменателя дроби 7/12 имеет вид 12=2·2·3 . Так как оно содержит простой множитель 3 , отличный от 2 и 5 , то эта дробь не может быть представлена в виде конечной десятичной дроби, но может быть переведена в периодическую десятичную дробь.

Дробь 21/56 – сократимая, после сокращения она принимает вид 3/8 . Разложение знаменателя на простые множители содержит три множителя, равных 2 , следовательно, обыкновенная дробь 3/8 , а значит и равная ей дробь 21/56 , может быть переведена в конечную десятичную дробь.

Наконец, разложение знаменателя дроби 31/17 представляет собой само простое число 17 , следовательно, эту дробь нельзя обратить в конечную десятичную дробь, но можно обратить в бесконечную периодическую.

47/20 и 21/56 можно перевести в конечную десятичную дробь, а 7/12 и 31/17 – только в периодическую.

Информация предыдущего пункта порождает вопрос: «Может ли при делении числителя дроби на знаменатель получиться бесконечная непериодическая дробь»?

Ответ: нет. При переводе обыкновенной дроби может получиться либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь. Поясним, почему это так.

Из теоремы о делимости с остатком ясно, что остаток всегда меньше делителя, то есть, если мы выполняем деление некоторого целого числа на целое число q , то остатком может быть лишь одно из чисел 0, 1, 2, …, q−1 . Отсюда следует, что после завершения деления столбиком целой части числителя обыкновенной дроби на знаменатель q , не более чем через q шагов возникнет одна из двух следующих ситуаций:

  • либо мы получим остаток 0 , на этом деление закончится, и мы получим конечную десятичную дробь;
  • либо мы получим остаток, который уже появлялся ранее, после этого остатки начнут повторяться как в предыдущем примере (так как при делении равных чисел на q получаются равные остатки, что следует из уже упомянутой теоремы о делимости), так будет получена бесконечная периодическая десятичная дробь.

Других вариантов быть не может, следовательно, при обращении обыкновенной дроби в десятичную дробь не может получиться бесконечная непериодическая десятичная дробь.

Из приведенных в этом пункте рассуждений также следует, что длина периода десятичной дроби всегда меньше, чем значение знаменателя соответствующей обыкновенной дроби.

Теперь разберемся, как перевести десятичную дробь в обыкновенную. Начнем с перевода конечных десятичных дробей в обыкновенные дроби. После этого рассмотрим метод обращения бесконечных периодических десятичных дробей. В заключение скажем о невозможности перевода бесконечных непериодических десятичных дробей в обыкновенные дроби.

Получить обыкновенную дробь, которая записана в виде конечной десятичной дроби, достаточно просто. Правило перевода конечной десятичной дроби в обыкновенную дробь состоит из трех шагов:

  • во-первых, записать данную десятичную дробь в числитель, предварительно отбросив десятичную запятую и все нули слева, если они есть;
  • во-вторых, в знаменатель записать единицу и к ней дописать столько нулей, сколько цифр находится после запятой в исходной десятичной дроби;
  • в-третьих, при необходимости выполнить сокращение полученной дроби.

Рассмотрим решения примеров.

Обратите десятичную дробь 3,025 в обыкновенную дробь.

Если в исходной десятичной дроби убрать десятичную запятую, то мы получим число 3 025 . В нем нет нулей слева, которые бы мы отбросили. Итак, в числитель искомой дроби записываем 3 025 .

В знаменатель записываем цифру 1 и справа к ней дописываем 3 нуля, так как в исходной десятичной дроби после запятой находятся 3 цифры.

Так мы получили обыкновенную дробь 3 025/1 000 . Эту дробь можно сократить на 25 , получаем .

.

Выполните перевод десятичной дроби 0,0017 в обыкновенную дробь.

Без десятичной запятой исходная десятичная дробь имеет вид 00017 , отбросив нули слева получаем число 17 , которое и является числителем искомой обыкновенной дроби.

В знаменатель записываем единицу с четырьмя нулями, так как в исходной десятичной дроби после запятой 4 цифры.

В итоге имеем обыкновенную дробь 17/10 000 . Эта дробь несократима, и перевод десятичной дроби в обыкновенную закончен.

.

Когда целая часть исходной конечной десятичной дроби отлична от нуля, то ее можно сразу перевести в смешанное число, минуя обыкновенную дробь. Дадим правило перевода конечной десятичной дроби в смешанное число:

  • число до десятичной запятой надо записать как целую часть искомого смешанного числа;
  • в числитель дробной части нужно записать число, полученное из дробной части исходной десятичной дроби после отбрасывания в ней всех нулей слева;
  • в знаменателе дробной части нужно записать цифру 1 , к которой справа дописать столько нулей, сколько цифр находится в записи исходной десятичной дроби после запятой;
  • при необходимости выполнить сокращение дробной части полученного смешанного числа.

Рассмотрим пример перевода десятичной дроби в смешанное число.

Представьте десятичную дробь 152,06005 в виде смешанного числа

Число 152 до десятичной запятой есть целая часть искомого смешанного числа.

После десятичной запятой находится 06005 , после отбрасывания нуля слева получаем число 6 005 – это числитель дробной части.

А в знаменателе дробной части запишем 1 и допишем 5 нулей, так как после десятичной запятой находятся 6 цифр, то есть, в знаменателе будет 100 000 .

Так мы получили смешанное число . Дробную часть этого числа можно сократить на 5 , после этого имеем .

На этом перевод конечной десятичной дроби 152,06005 в смешанное число закончен.

Любую периодическую десятичную дробь можно перевести в обыкновенную дробь. На примерах разберем способ, позволяющий осуществить такой переход.

Начнем с самых простых случаев, когда период дроби есть 0. Периодические дроби с периодом 0 можно заменить равными им конечными десятичными дробями, для этого достаточно отбросить все нули справа. Таким образом, перевод в обыкновенные дроби периодических дробей с периодом 0 сводится к обращению конечных десятичных дробей.

Запишите периодическую дробь 3,75(0) в виде обыкновенной дроби.

Отбрасывание справа нулей переводит бесконечную периодическую десятичную дробь 3,75(0) в равную ей конечную десятичную дробь 3,75 . А как осуществляется обращение конечных десятичных дробей в обыкновенные дроби, мы разобрали в предыдущем пункте: . Таким образом, 3,75(0)=15/4 .

Переходим к переводу бесконечных периодических десятичных дробей с отличным от 0 периодом в обыкновенные дроби. В основе такого перевода лежит тот факт, что периодическую часть периодической десятичной дроби можно рассматривать как сумму членов бесконечно убывающей геометрической прогрессии. Например, 0,(73)=0,73+0,0073+0,000073+… или 4,07(254)=4,07+ (0,00254+0,00000254+0,00000000254+…) .

Напомним, что сумма членов бесконечно убывающей геометрической прогрессии с первым членом b и знаменателем q ( 0 ) равна .

Теперь можно рассмотреть решения нескольких примеров.

Переведите периодическую дробь 0,(8) в обыкновенную дробь.

Достаточно очевидно, что 0,(8)=0,8+0,08+0,008+… . Мы пришли к сумме членов бесконечно убывающей геометрической прогрессии с первым членом 0,8 и знаменателем 0,1 . Применив формулу суммы, получаем . Осталось выполнить нужные действия с десятичными дробями: .

Таким образом, бесконечная периодическая десятичная дробь 0,(8) обращается в обыкновенную дробь 8/9 .

Для закрепления материала разберем решение еще одного примера.

Представьте бесконечную десятичную периодическую дробь 0,43(18) в обыкновенную дробь.

Запишем исходную периодическую дробь в виде следующей суммы: 0,43(18)=0,43+ (0,0018+0,000018+0,00000018+…) .

Конечная десятичная дробь 0,43 переводится в обыкновенную дробь 43/100 , а в скобках находится сумма членов бесконечно убывающей геометрической прогрессии с первым членом 0,0018 и знаменателем 0,01, она равна . Следовательно, 0,43(18)=0,43+ (0,0018+0,000018+0,00000018+…)= 43/100+18/9900 .

После сложения дробей с разными знаменателями и сокращения полученной дроби, приходим к обыкновенной дроби 19/44 . На этом перевод периодической дроби в обыкновенную дробь завершен.

Выше мы выяснили, что любая обыкновенная дробь переводится либо в конечную десятичную дробь, либо в периодическую десятичную дробь. Отсюда следует, что никакая бесконечная непериодическая десятичная дробь не может быть переведена в обыкновенную дробь, так как полученную обыкновенную дробь нельзя будет перевести обратно в эту бесконечную непериодическую дробь.

источник

Adblock
detector