Меню

Чему равна в большинстве случаев абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374. Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

источник

1.4. Погрешности приближенных вычислений
Тема 1. Введение. Приближенные числа и действия над ними. Оценка точности вычислений

1.4. Погрешности приближенных вычислений
Понятие о погрешности приближения

Естественно, что приближенное и точное число всегда отличаются друг от друга. Иначе говоря, при приближении возникает некоторая погрешность приближения. Причем, в математике различают относительную и абсолютную погрешность.

Абсолютной погрешностью (или, просто, погрешностью) приближенного числа называют разность между этим числом и его точным значением (при этом из большего числа вычитается меньшее) .

При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300-1284=16. А при округлении до 1280 абсолютная погрешность составляет 1280-1284 = 4.

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому (точному) числу.

При округлении числа 197 до 200 абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна 3/197 ≈ 0,01523 или приближенно 3/200 ≈ 1,5%.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Например, продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 ≈ 1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей) , называется предельной абсолютной погрешностью.

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей) называется предельной относительной погрешностью.

Предельная абсолютная погрешность обозначается греческой буквой Δ – “дельта”. А предельная относительная погрешность – греческой буквой δ (“дельта малая”). Если приближенное число обозначить буквой α, то δ = Δ/ α.

В примере с арбузом за предельную абсолютную погрешность можно взять Δ = 50г, а за предельную относительную – δ = 1,4%.

Погрешность действий над приближенными числами

Предельная абсолютная погрешность суммы (разности) не превышает суммы предельных абсолютных погрешностей отдельных слагаемых.

Пусть даны точные числа и их приближенные значения: 2,463 ≈ 2,46 и 3,208 ≈ 3,21.

Их абсолютные погрешности приближений соответственно равны: 2,463-2,46 = 0,003 и 3,21-3,208 = 0,002.

Рассмотрим сумму приближенных чисел – 2,46+3,21 = 5,67.

Предельная погрешность суммы равна 0,003+0,002 = 0,005.

Если проверить, то получится, что точная сумма будет 2,463+3,208 = 5,671.

Следовательно, точно вычисленная погрешность приближения будет: 5,671-5,67 = 0,001. Действительно 0,001 ≤ 0,005.

Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей.

Пусть перемножаются приближенные числа 50 и 20 и пусть предельная относительная погрешность первого сомножителя равна 0,4%, а второго 0,5%. тогда предельная относительная погрешность произведения 50*20 = 1000 приближенно равна 0,9%.

Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя.

источник

Абсолютной погрешностью или, короче, погрешностью приближенного числа называется разность между этим числом и его точным значением (из большего числа вычитается меньшее)*.

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 – 1284 = 16. При округлении до 1280 абсолютная погрешность составляет 1284 – 1280 = 4.

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу.

Пример 2. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна 3/197 или, округленно, 3/197 = 1,5 %.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Пример 3. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превосходит 50/3600 ≈ 1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью. Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной погрешностью.

В примере 3 за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность – 1,4 %.

Величина предельной погрешности не является вполне определенной. Так, в примере 3 можно принять за предельную абсолютную погрешность 100 г, 150 г и вообще всякое число, большее чем 50 г. На практике берется по возможности меньшее значение предельной погрешности. В тех случаях, когда известна точная величина погрешности, эта величина служит одновременно предельной погрешностью. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или oотносительная). Когда она прямо не указана, подразумевается что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа.

Читайте также:  Какой щебень используется для дренажа

Предельная абсолютная погрешность обозначается греческой буквой Δ («дельта»); предельная относительная погрешность — греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой а, то

Пример 4. Длина карандаша измерена линейкой с миллиметровыми делениями. Измерение показало 17,9 см. Какова предельная относительная погрешность этого измерения?
Здесь а = 17,9 см; можно принять Δ = 0,1 см, так как с точностью до 1 мм измерить карандаш нетрудно, a значительно уменьшить, предельную погрешность ни удастся (при навыке можно прочесть на хорошей линейке и 0,02 и даже 0,01 см, но у самого карандаша ребра могут разниться на бoльшую величину). Относительная погрешность равна 0,1/17,9. Округляя, находим δ = 0,1/18 ≈ 0,6%.

Пример 5. Цилиндрический поршень имеет около 35 мм в диаметре. С какой точностью нужно его измерить микрометром, чтобы предельная относительная погрешность составляла 0,05%?
Решение. По условию, предельная абсолютная погрешность должна составлять 0,05% от 35 мм. Следовательно, предельная абсолютная погрешность равна 36*(0,05/100) = 0,0175 (мм) или, усиливая, 0,02 (мм). Можно воспользоваться формулой δ = Δ/a. Подставляя в неё а = 35, δ = 0,0005, имеем 0,0005 = Δ/35. Значит, Δ = 35 • 0,0005 = 0,0175 (мм).

* Иначе говоря, если a есть приближенное число, а х – его точное значение, то абсолютная погрешность есть абсолютное значение разности a – х. В некоторых руководствах абсолютной погрешностью называется сама разность a – х (или разность х – a). Эта величина может быть положительной или отрицательной.

источник

Оценить отклонение каждого из результатов измерения от истинной величины можно лишь при наличии данных большого числа измерений с использованием теории вероятности. Однако на практике, в лабораторных условиях проводят 3-5 измерений. В этом случае абсолютная погрешность отдельного i-го измерения будет следующей:

где АСР – средняя величина размера А. Средняя арифметическая величина всех ½DАi½ значений

называется абсолютной погрешностью опыта. Окончательный результат изме­рения может быть записан в виде

где А – искомая величина, которая лежит внутри интервала

апример, если сделаем несколько измерений длины заготовки в столярной мастерской и получим среднее значение lСР = 75.5 см, а среднее арифметическое абсолютной погрешности lСР = 0.3 см, то результат запишется в виде

Это означает, что истинное значение длины заготовки лежит в интервале от 75.2 см до 75.8 см. При этом не имеет смысла вычислять среднее значение с большим числом знаков после запятой, так как от этого точность не увеличивается.

Абсолютная погрешность измерения не характеризует точности проведенных измерений. Поэтому для того, чтобы сравнить точность различных измерений и величин разной размерности, находят среднюю относительную погрешность результата (ЕА). Относительная погрешность определяется отношением абсолютной погрешности к среднему арифметическому значению измеряемой величины, которая определяется в процентах:

ЕА=100%.

Относительная погрешность показывает, какая часть абсолютной погрешности приходится на каждую единицу измеренной величины. Это дает возможность оценить точность проведенных измерений, качество работы.

Так, например, пусть при измерении бруска длиной l = 1.51 см была допущена абсолютная погрешность 0.03 мм, а при измерении расстояния от Земли до Луны L = 3.64 . 10 5 км абсолютная погрешность составила 100 км. Может показаться, что первое измерение выполнено намного точнее второго. Однако о точности измерения можно судить по относительной погрешности, а она показывает, что второе измерение было выполнено в семь раз точнее первого:

El = 100% = 0.2%

и ЕL = 100% = 0.03%.

В большинстве случаев при выполнении физических экспериментов исследуемая величина не может быть измерена непосредственно, а является функцией одной или нескольких переменных, измеренных непосредственно. При косвенных измерениях абсолютная и относительная погрешности результатов измерений находятся вычислением через абсолютные и относительные погрешности непосредственно измеренных величин.

Для определения абсолютных и относительных погрешностей искомой величины при косвенных измерениях можно воспользоваться формулами дифференцирования, потому что абсолютная ошибка функции равна абсолютной ошибке аргумента, умноженной на производную этой функции, то есть полному дифференциалу функции.

Рассмотрим это более подробно. До­пустим, что физическая величина А является функцией многих переменных:

Правило I. Вначале находят абсолютную погрешность величины А, а затем относительную погрешность. Для этого необходимо:

1) Найти полный дифференциал функции

.

) Заменить бесконечно малые dx, dу, dz, . соответствующими абсолютными ошибками аргументовDx, Dy, Dz, … (при этом знаки “минус” в абсо­лютных ошибках аргументов заменяют знаками “плюс”, так чтобы величина ошибки была максимальной):

.

Применяя это правило к частным случаям, получим:

– абсолютная погрешность суммы равна сумме абсолютных погрешностей слагаемых. Если X = a + b, то DX = Da + Db;

– абсолютная погрешность разности равна сумме абсолютных погрешностей уменьшаемого и вычитаемого. Если X = a – b, то DX = Da + Db;

– абсолютная погрешность произведения двух сомножителей равна сумме произведений среднего значения первого множителя (aCP) на абсолютную погрешность второго и среднего значения второго множителя (bCP) на абсолютную погрешность первого. Если X = а  b, то DX = aCP  Db + bCP  Dа. Если X = a n , то DX = n  аCP n -1  Dа;

– абсолютная погрешность дроби равна сумме произведения знаменателя на абсолютную погрешность числителя и числителя на абсолютную погрешность знаменателя, деленной на квадрат знаменателя. Если X =, то DX=.

3) По определению найдем относительную погрешность

.

источник

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

где ∆xi – абсолютная погрешность i-го измерения, xi_- результат i-го измерения, xи – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

x = ± (3)

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению ( справедливость xи≈ будет показана ниже), – абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

(4)

Относительная погрешность – величина безразмерная. Она выражается в процентах:

100% (5)

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения ( отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности – это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

Читайте также:  Как выращивать шампиньоны на даче

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале – трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности – это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.

Дата добавления: 2016-07-29 ; просмотров: 14709 | Нарушение авторских прав

источник

3.22 абсолютная погрешность газоанализатора [(absolute) error (of a measuring instrument)]: Разность между измеренным с помощью газоанализатора значением и истинным (действительным) значением измеряемой величины, выраженная в единицах измеряемой величины.

1.2 абсолютная погрешность измерений: Погрешность измерений, выраженная в единицах измеряемой величины, определяемая по формуле

где ΔМ – абсолютная погрешность измерений,

Мд– действительное значение.

1.2 абсолютная погрешность измерений: Погрешность измерений, выраженная в единицах измеряемой величины, определяемая по формуле

ΔМ – абсолютная погрешность измерений,

Мизм – результат измерений,

Мд – действительное значение.

Абсолютная погрешность измерений (абсолютная погрешность)

Погрешность измерений, выраженная в единицах измеряемой величины.

Примечание. Термин «абсолютная погрешность» применим к результатам измерений в шкалах разностей (интервалов), отношений и абсолютных.

Относительная погрешность измерений (относительная погрешность)

Погрешность измерений, выраженная отношением абсолютной погрешности измерений к значению измеряемой величины.

1. Распространено представление относительной погрешности в процентах.

2. Понятие «относительная погрешность» применимо в измерениях величин по шкалам отношений и абсолютным шкалам, а также к интервалам величин, описываемых шкалами разностей (интервалов). Однако к самим величинам, описываемым шкалами разностей, это понятие неприменимо. Например, бессмысленно (невозможно) выражать в процентах погрешность измерений температуры по шкале Цельсия или погрешность датировки события.

Неопределенность воспроизведения шкалы

Неопределенности результатов измерений, выполняемых при воспроизведении шкалы.

3.10 абсолютная погрешность измерения: Погрешность измерения, выраженная в единицах измеряемой величины [1].

6. Абсолютная погрешность измерения пути

Разность значений пути, измеренного одометрической наземной навигационной аппаратурой, и истинного

3. Абсолютная погрешность определения дальности до пункта назначения

Разность значений дальности до пункта назначения, определенных одометрической наземной навигационной аппаратурой, и истинного

5. Абсолютная погрешность определения дирекционного угла на пункт назначения

Разность значений дирекционного угла на пункт назначения, определенных одометрической наземной навигационной аппаратурой, и истинного

4. Абсолютная погрешность определения дирекционного угла объекта

Разность значений дирекционного угла объекта, определенных одометрической наземной навигационной аппаратурой, и истинного

69 абсолютная погрешность определения местоположения потребителя ГНСС: Точность определения местоположения потребителя ГНСС в геоцентрической пространственной системе координат.

1. Абсолютная погрешность определения плоских прямоугольных геодезических координат

Разность значений координат, определенных одометрической наземной навигационной аппаратурой и соответствующих истинных

138. Абсолютная погрешность электрического реле

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ — см. в ст. Погрешность … Большой Энциклопедический словарь

абсолютная погрешность — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN absolute accuracy … Справочник технического переводчика

абсолютная погрешность — см. Погрешность. * * * АБСОЛЮТНАЯ ПОГРЕШНОСТЬ АБСОЛЮТНАЯ ПОГРЕШНОСТЬ, см. в ст. Погрешность (см. ПОГРЕШНОСТЬ) … Энциклопедический словарь

абсолютная погрешность — absoliučioji pakla >Sporto terminų žodynas

абсолютная погрешность — absoliučioji pakla >Automatikos terminų žodynas

абсолютная погрешность — absoliučioji pakla >Penkiakalbis aiškinamasis metrologijos terminų žodynas

абсолютная погрешность — absoliučioji pakla >Fizikos terminų žodynas

(абсолютная) погрешность — 3.1.27 (абсолютная) погрешность (измерительного прибора) (absolute) error (of a measuring instrument): Разность между показанием измерительного прибора и условно истинным значением измеряемой величины [МЭК 359, 4.17]. Источник … Словарь-справочник терминов нормативно-технической документации

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ — см. Погрешность … Математическая энциклопедия

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ — см. Погрешность … Естествознание. Энциклопедический словарь

источник

Сейчас 44 гостей и ни одного зарегистрированного пользователя на сайте

  • Пуск
  • Физика
  • Всё о погрешностях
  • Абсолютная и относительная погрешность

Результат измерения физической величины всегда отличается от ее истинного значения, наиболее точно отражающего соответствующую физическую характеристику.

Действительное значение (результат измерения) – значение физической величины, найденное экспериментально.

При прямых измерениях отклонение действительного значения величины от ее истинного значения вызывают следующие факторы:

  • ограниченная точность измерительного прибора, связанная с несовершенством его конструкции и определяемая ценой деления шкалы прибора;
  • непостоянство внешних условий опыта (например, колебания температуры и давления воздуха);
  • несовершенные действия экспериментатора (например, запаздывание включения секундомера, ошибочный отсчет длины из-за несовпадения положения уровня глаз наблюдателя и делений на шкале прибора).

При косвенных измерениях отклонения действительного значения величины от ее истинного значения является следствием таких факторов как:

  • неточность метода измерения, т.е. идеализация условий протекания эксперимента (например, при изучении движения тела не учитывается сопротивление воздуха);
  • неполное соответствие исследуемого объекта используемой упрощенной физической модели (например, брусок может не быть идеальным параллелепипедом из-за наличия закруглений на ребрах и вершинах).

Точность измерений определяется близостью действительного значения физической величины к истинному. Отклонение результата измерения от истинного значения измеряемой величины называется погрешностью измерения. Качество измерений физической величины характеризует абсолютной и относительной погрешностью.

Абсолютная погрешность при однократном прямом измерении равна приборной погрешности (Δα = Δαпр). Приборная (экспериментальная) погрешность – погрешность средств измерения. Абсолютную погрешность выражают в единицах измерения измеряемой величины. Чем меньше абсолютная погрешность измерения, тем точнее оно выполнено.

Любой прибор позволяет проводить измерения лишь с определенной точностью. Для средств измерения с линейной шкалой (линейка, измерительная лента, динамометр) приборная погрешность принимается равной половине цены деления шкалы. Для измерительных приборов с нониусом (штангенциркуль, микрометр) приборная погрешность равна цене деления нониуса. Секундомер имеет приборную погрешность, равную цене его деления.

Результат однократного прямого измерения принято записывать в виде α = αизм ± Δα (1) , где αизм – измеренное значение физической величины αизм, Δα = Δαпр.

Двойной знак ± перед абсолютной погрешностью означает, что истинное значение измеряемой величины лежит в интервале (αизм – Δα, αизм + Δα).

Относительная погрешность при однократном прямом измерении – безразмерная величина, равная отношению абсолютной погрешности к измеряемому значению физической величины: ε = Δα/αизм (2)

Точность измерений различных физических величин сравнивают по их относительным погрешностям. Чем меньше относительная погрешность, тем выше точность измерения.

Предположим, что расстояние от Земли до Солнца l1=1,5·10 8 км измеряется с абсолютной погрешностью Δl1=15 км, а длина комнаты l2=10 м – с абсолютной погрешностью Δl2=1 мм. Относительная погрешность первого измерения ε1=10 -7 , а второго – ε2=10 -4 . Это означает, что точность первого измерения в 1000 раз больше, чем второго, так как ε12 = 1/1000

источник

Абсолютная погрешность измерений. Как рассчитать абсолютную погрешность измерений? Определение абсолютной и относительной погрешности прямых измерений

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы – килограммы, объёма – кубические литры, времени – секунды, скорости – метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Читайте также:  Как хранить черноплодку в домашних условиях

Наименование каждой приставки соответствует своему числу множителя:

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения – сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром – чтобы измерять температуру, гигрометром – чтобы определять влажность, амперметром – замерять уровень силы, с которой распространяется электрический ток.

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 – 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А – в виде величины для измерительных процессов;

а – значение результата замеров;

D – обозначение абсолютной погрешности.

Если слаживать или вычитать величины с учетом погрешности, это число будет составлять сумму цифр, которые и обозначают погрешность, и имеются у каждой отдельно взятой величины.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Если рассматривать классификацию погрешностей в зависимости от способа её выражения, можно выделить такие разновидности:

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой метод измерения физических величин.

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности – 4. Эту величину обязательно знать для дальнейших вычислений.

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности –(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

источник

Adblock
detector