Меню

Чему равна начальная координата тела

1. Механическое движение.
Явление механического движения тел (материальных точек)состоит в том, что положение тела относительно других тел, т. е. его координаты, с течением времени изменяется.Чтобы найти координаты тела в любой момент времени, нужно знать начальные координаты и вектор перемещения тела. Изменение координаты тела равно проекции вектора перемещения на соответствующую ось координат.

Прямолинейное равномерное движение — это самый простой вид движения.При таком движении нужно определять лишь одну координату потому, что координатную ось можно направить вдоль направления движения тела. Координату х тела (материальной точки) в любой момент времени t можно вычислить по формуле:

где — начальная координата тела, а — проекция вектора его скорости на ось х. При вычислениях по этой формуле знаки входящих в нее величин определяются условием задачи.

Механическое движение относительно. Это значит, что перемещение и скорость тела относительно различных систем координат, движущихся друг относительно друга, различны.

Покой также относителен. Если относительно какой-то системы координат тело покоится, то существуют и такие системы отсчета, относительно которых оно движется.

2. Основная задача механики
состоит в нахождении положения тела в любой момент времени. Решение этой задачи идет по своеобразной «цепочке»:
чтобы найти координату точки, нужно знать ее перемещение, а чтобы вычислить перемещение, нужно знать скорость движения.
По такой цепочке: скорость → перемещение → координата решают задачи механики для прямолинейного равномерного движения.

Если движение ускоренное, то нужно знать ускорение, так что при таком движении задачи решают по «цепочке» ускорение → скорость → перемещение → координата. И для равномерного, и для ускоренного движения должны быть известны начальные условия — начальные координаты и начальная скорость.
При прямолинейном ускоренном движении мгновенная скорость тела (материальной точки) непрерывно изменяется от одного момента времени к другому. Поэтому для вычисления скорости в любой момент времени и в любой точке нужно знать быстроту ее изменения, т.е. ускорение:

Проекцию скорости тела на выбранную координатную ось в любой момент времени t вычисляют по формуле:

Координату тела находят по формуле:

Проекцию перемещения находят по формуле:

Из приведенных формул получаются формулы для скорости, координат и перемещений при равномерном прямолинейном движении, если принять, что а x = 0.

Значение проекции перемещения при равноускоренном движении можно определить также по формуле:

Так как , то для координаты тела х имеем:

При вычислениях по приведенным формулам знаки проекций векторов , а также знак начальной координаты х, определяются условием задачи и направлением оси координат.

3. При криволинейном движении непрерывно изменяется направление вектора скорости, и в каждой точке траектории он направлен по касательной к траектории в данной точке. Поэтому даже равномерное движение по криволинейной траектории, при котором значение модуля скорости постоянно, есть ускоренное движение. Движение тела (материальной точки) по окружности описывают не только с помощью линейных величин — перемещения и скорости, но и с помощью угловых величинугла поворота радиуса &#966, проведенного из центра окружности к телу, и угловой скорости ω.

Связь между линейной и угловой скоростью выражается формулой:

где r — радиус окружности.
При равномерном движении по окружности вектор ускорения в любой точке окружности перпендикулярен вектору скорости и направлен к центру окружности. Модуль вектора центростремительного ускорения выражается равенством:

Относительно вращающегося стержня (оси) не закрепленное на нем тело (точка) движется вдоль стержня по направлению от оси вращения.

Пример решения задачи:

1. Ширина реки 200 м. Лодка, держа курс перпендикулярно течению реки, достигла противоположного берега за 140 с. Скорость течения воды в реке 0,8 м/с. Определите скорость и перемещение лодки относительно берега.


Вычисления:

Ответ: Скорость лодки относительно берега 1,6 м/с, перемещение 112 м.

Решите задачи самостоятельно:

1. Через реку переправляется лодка, выдерживая курс перпендикулярно течению. Скорость лодки
4 м/с, скорость течения реки 3 м/с. Какова ширина реки, если лодку снесло на 60 м?

2. 9 км/ч = . м/с; 10 м/с = . км/ч; 8 км/с = . км/ч, 54 км/ч = . м/с.

3. Автомобиль движется: а) с постоянной скоростью; б) с постоянным ускорением;
в) с положительным ускорением; г) с отрицательным ускорением.
Назовите вид каждого движения и изобразите соответствующие графики скорости.

источник

Виртуальные лаборатории позволяют рассказать и показать о любых явлениях природы.

Издательский дом журналы у нас на сайте

1. Существуют различные виды механического движения. В зависимости от формы траектории движение может быть прямолинейным или криволинейным. При движении скорость тела оставаться постоянной или с течением времени изменяться. В зависимости от характера изменения скорости движение может быть равномерным и неравномерным.

Рассмотрим движение, происходящее с постоянной скоростью, траекторией которого является прямая линия, т. е. равномерное прямолинейное движение.

Равномерным прямолинейным движением называют движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.

Слова за «любые равные промежутки времени» означают, что, какие бы равные промежутки времени (1 с, 2 с, 5 мин, 10 мин и т. д.) мы ни выбрали, перемещение тела за эти равные промежутки времени будет одинаковым. Например, если автомобиль за каждые 2 мин проезжает 480 м, то можно считать, что он движется равномерно.

Понятно, что практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Поэтому равномерное движение является моделью реального движения.

2. При равномерном движении быстрота изменения положения тела в пространстве может быть различной. «Быстрота» движения характеризуется физической величиной, называемой скоростью.

Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения тела ко времени, за которое это перемещение произошло.

Если за время t тело совершило перемещение s, то скорость его движения v равна

Единица скорости в СИ — метр в секунду (1 м/с). Эту единицу можно получить, разделив единицу перемещения на единицу времени:

За единицу скорости принимают — скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1 м.

Зная скорость равномерного движения, можно найти перемещение тела за любой промежуток времени:

Векторы скорости и перемещения при равномерном прямолинейном движении направлены в сторону движения тела.

3. Как мы уже сказали, основной задачей механики является определение в любой момент времени положения тела, т. е. его координаты. Запишем уравнение зависимости координаты тела от времени при равномерном прямолинейном движении. Это уравнение называют уравнением движения.

Пусть тело совершило перемещение s. Направим координатную ось X по направлению перемещения тела (рис. 8, а). Запишем уравнение для проекции перемещения sx на ось X. На рисунке x — начальная координата тела, x — конечная координата тела. Проекция перемещения равна разности конечной и начальной координат тела:

С другой стороны, проекция перемещения на ось X равна произведению проекции скорости на эту ось на время:

Отсюда координата тела тела x в любой момент времени t:

Таким образом, координату тела при равномерном движении в любой момент времени можно определить, если известны его начальная координата и проекция скорости движения на ось X.

Проекции скорости и перемещения могут быть как положительными, так и отрицательными. Проекция скорости положительна, если направление движения совпадает с положительным направлением оси X (см. рис. 8, а). В этом случае x > x. Проекция скорости отрицательна, если тело движется против положительного направления оси X (рис. 8, б). В этом случае x

4. Зависимость координаты тела от времени можно представить на графике.

Предположим, что тело движется из начала координат вдоль положительного направления оси X с постоянной скоростью. Проекция скорости тела на эту ось равна 2 м/с. Уравнение движения в этом случае имеет вид: x = 2t (м). Зависимость координаты тела от времени — линейная. Графиком такой зависимости является прямая, проходящая через начало координат (рис. 9).

Если в начальный момент времени координата тела x = 6 м, а проекция его скорости vx = 2 м/с, то уравнение движения имеет вид: x = 6 + 2t (м). Это тоже линейная зависимость координаты тела от времени, и ее графиком является прямая, проходящая через точку, для которой при t = 0 x = 6 м (рис. 10).

В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: x = 6 – 2t (м). График зависимости координаты тела от времени представлен на рисунке 11.

Таким образом, движение тела может быть описано аналитически, т. е. с помощью уравнения движения, и графически, т. е. с помощью графика зависимости координаты тела от времени.

5. Пример решения задачи

При решении задач необходимо выполнять следующую последовательность действий.

1. Кратко записать условие задачи.

2. Проанализировать ситуацию, описанную в условии задачи:

— выяснить, можно ли принять движущиеся тела за материальные точки;

— сделатьрисунок, изобразив на нем векторы скорости;

— выбрать систему отсчета — тело отсчета, направления координатных осей, начало отсчета координат, начало отсчета времени; записать начальные условия (значения координат в начальный момент времени) для каждого тела.

3. Записать уравнение движения в векторной форме и для проекций на координатные оси.

4. Записать уравнение движения для каждого тела с учетом начальных условий и знаков проекций скорости.

5. Решить задачу в общем виде.

6. Подставить в формулу значения величин и выполнить вычисления.

Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один — со скоростью 10 м/с, другой — со скоростью 20 м/с. Определите время и координату места встречи автомобилей, если в начальный момент времени расстояние между ними равно 120 м.

Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров.

Задачу можно решить двумя способами: аналитически и графически.

1-й способ. Свяжем систему отсчета с Землей, ось OX направим в сторону движения первого автомобиля, за начало отсчета координаты выберем точку O — положение первого автомобиля в начальный момент времени (рис. 12).

В начальный момент времени координаты каждого тела равны: x01 = 0; x02 = l.

Уравнения движения для каждого тела с учетом начальных условий имеют вид:

Подставив значение времени в уравнение для координаты первого автомобиля, получим значение координаты места встречи автомобилей: x = 10 •4 с = 40 м.

2-й способ. Построим графики зависимости координаты автомобилей от времени, соответствующие уравнениям x1 = 10t (м) и x2 = 120 – 20t (м) (рис. 13). Точка A пересечения графиков соответствует времени и координате места встречи автомобилей: t = 4 с, x = 40 м.

Ответ: t = 4 с, x = 40 м.

1. Какое движение называют равномерным прямолинейным?

2. Что называют скоростью равномерного прямолинейного движения?

3. Какова единица скорости в СИ?

4. Каково уравнение зависимости координаты равномерно движущегося тела от времени?

5. Что представляет собой график зависимости координаты тела от времени при равномерном прямолинейном движении?

6. Почему равномерное движение является моделью?

1. На рисунке 14 представлен график зависимости координаты тела от времени. Чему равна начальная координата тела? Чему равна координата тела в момент времени t = 4 с? Чему равна проекция скорости движения тела? Запишите уравнение движения тела, соответствующее представленному графику.

2. На рисунке 15 представлены графики зависимости координаты от времени для трех тел. Сравните модули скорости движения тел 1 и 2. Каковы знаки проекций скорости движущихся тел? Что означает точка пересечения графиков 1 и 3, 2 и 3? Что означает точка пересечения графика 3 с осью абсцисс? Каково направление движения тела 3? Вычислите значения скорости движения каждого тела. Запишите уравнения движения каждого тела.

3. На рисунке 16 приведены графики зависимости проекций скорости движения двух тел от времени. Каковы знаки проекций скорости? Каковы значения проекций скорости? Чему равны проекции перемещения тел за 3 с?

4. Автомобиль, подъезжая к пункту A, набрал скорость 72 км/ч и двигался равномерно по прямолинейному участку дороги. Доехав за 5 мин до пункта B, он повернул обратно и двигался равномерно с той же скоростью еще 3 мин. Чему равны путь автомобиля и модуль его перемещения? Будем считать, что промежутки времени торможения при подъезде к пункту B, времени разворота и времени, в течение которого автомобиль набирал скорость, малы так же, как и расстояния, на которых это происходило.

5. Скоростной поезд, отходя от станции, разгоняется и, находясь на расстоянии 2 км от станции, начинает двигаться равномерно и прямолинейно со скоростью 108 км/ч. Чему равно время равномерного движения поезда, если на расстоянии 11 км от станции скорость поезда стала уменьшаться?

6. Два поезда движутся равномерно навстречу друг другу: один со скоростью 72 км/ч, другой — 90 км/ч. Определите время и координату места встречи поездов, если расстояние между ними в момент начала равномерного движения составляло 270 м. Решите задачу аналитически и графически.

источник

1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.

Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.

2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.

Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.

Если за время ​ \( t \) ​ тело совершило перемещение ​ \( \vec \) ​, то скорость его движения ​ \( \vec \) ​ равна ​ \( \vec=\frac<\vec> \) ​.

Единица скорости: \( [\,v\,]=\frac<[\,s\,]> <[\,t\,]>\) ; \( [\,v\,]=\frac<1\,м><1\,с>=1\frac<м> <с>\) . За единицу скорости принимается 1 м/с — скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1 м.

Зная скорость равномерного движения, можно найти перемещение за любой промежуток времени: \( \vec=\vect \) . Вектор скорости и вектор перемещения направлены в одну сторону — в сторону движения тела.

3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.

Пусть \( \vec \) — перемещение тела (рис. 11). Направим координатную ось ОХ по направлению перемещения. Найдем проекцию перемещения на координатную ось ОХ. На рисунке ​ \( x_0 \) ​ — координата начальной точки перемещения, ​ \( x \) ​ — координата конечной точки перемещения. Проекция перемещения равна разности координат конечной и начальной точек: ​ \( \vec_x=x-x_0 \) ​. С другой стороны, проекция перемещения равна проекции скорости, умноженной на время, т.е. \( \vec_x=\vec_xt \) . Откуда ​ \( x-x_0=\vec_xt \) ​ или \( x=x_0+\vec_xt \) . Если начальная координата ​ \( x_0 \) ​ = 0, то ​ \( x=\vec_xt \) ​.

Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.

Проекция скорости может быть как положительной, так и отрицательной. Проекция скорости положительна, если направление движения совпадает с положительным направлением оси ОХ (рис. 12). В этом случае ​ \( x>x_0 \) ​. Проекция скорости отрицательна, если тело движется против положительного направления оси ОХ (рис. 12). В этом случае \( x .

4. Зависимость координаты от времени можно представить графически.

Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: ​ \( x \) ​ = 4 м/с · ​ \( t \) ​. Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).

Для того чтобы её построить, необходимо иметь две точки: одна из них ​ \( t \) ​ = 0 и ​ \( x \) ​ = 0, а другая ​ \( t \) ​ = 1 с, ​ \( x \) ​ = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.

Если в начальный момент времени координата тела ​ \( x_0 \) ​ = 2 м, а проекция его скорости ​ \( v_x \) ​ = 4 м/с, то уравнение движения имеет вид: ​ \( x \) ​ = 2 м + 4 м/с · ​ \( t \) ​. Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой ​ \( t \) ​ = 0, ​ \( x \) ​ = 2 м (рис. 14).

В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: \( x \) ​ = 2 м – 4 м/с · ​ \( t \) ​. График зависимости координаты такого движения от времени представлен на рисунке 15.

Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.

График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.

5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.

Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.

При решении задачи целесообразно придерживаться следующей последовательности действий:

  1. Кратко записать условие задачи.
  2. Проанализировать ситуацию, описанную в условии задачи:
    — выяснить, можно ли принять движущиеся тела за материальные точки;
    — сделать рисунок, изобразив на нём векторы скорости;
    — выбрать систему отсчёта — тело отсчёта, направления координатных осей, начало отсчёта координат, начало отсчёта времени; записать начальные условия (значения координат в начальный момент времени) для каждого тела.
  3. Записать в общем виде уравнение движения в векторной форме и для проекций на координатные оси.
  4. Записать уравнение движения для каждого тела с учётом начальных условий и знаков проекций скорости.
  5. Решить задачу в общем виде.
  6. Подставить в формулу значения величин и выполнить вычисления.
  7. Проанализировать ответ.

Применим эту последовательность действий к приведённой выше задаче.

Дано: ​ \( v_1 \) ​ = 15 м/с ​ \( v_2 \) ​= 12 м/с ​ \( l \) ​= 270 м. Найти: ​ \( t \) ​ – ? \( x\) ​ – ?

Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь

Система отсчёта связана с Землёй, ось ​ \( Ox \) ​ направлена в сторону движения первого тела, начало отсчёта координаты — т. ​ \( O \) ​ — положение первого тела в начальный момент времени.

Начальные условия: ​ \( t \) ​ = 0; ​ \( x_ <01>\) ​ = 0; \( x_ <02>\) = 270.

Уравнение в общем виде: ​ \( \vec=\vect \) ​; ​ \( x=x_0+v_xt \) .

Уравнения для каждого тела с учётом начальных условий: ​ \( x_1=v_1t \) ​; ​ \( x_2=l-v_2t \) ​. В месте встречи тел ​ \( x_1=x_2 \) ; следовательно: ​ \( v_1t=l-v_2t \) ​. Откуда ​ \( t=\frac\cdot t \) ​. Подставив значение времени в уравнение для координаты первого автомобиля, получим значение координаты места встречи автомобилей: ​ \( x \) ​ = 150 м.

1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?

1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с

2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?

1) 0,25 м
2) 6 м
3) 10 м
4) 150 м

3. Автомобиль «Рено» проезжает за 1 мин. путь 1,2 км. Автомобиль «Пежо» проезжает за 20 с путь 0,2 км. Сравните значения скорости «Рено» — ​ \( v_1 \) ​ и скорости «Пежо» — \( v_2 \) .

1) ​ \( v_1=v_2 \) ​
2) ​ \( v_1=2v_2 \) ​
3) \( 2v_1=v_2 \)
4) \( 1,2v_1=10v_2 \)

4. На рисунке приведена столбчатая диаграмма. На ней представлены значения пути, которые при равномерном движении пролетают за одно и то же время муха (1) и воробей (2). Сравните их скорости ​ \( v_1 \) ​ и \( v_2 \) .

1) ​ \( v_1=v_2 \) ​
2) ​ \( v_1=2v_2 \) ​
3) \( 3v_1=v_2 \)
4) \( 2v_1=v_2 \)

5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен

1) 20 м
2) 40 м
3) 80 м
4) 160 м

6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен

1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с

7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости ​ \( v_1 \) ​, \( v_2 \) и \( v_3 \) движения этих тел.

1) ​ \( v_1=v_2=v_3 \) ​
2) \( v_1>v_2>v_3 \) ​
3) \( v_1 ​
4) ​ \( v_1=v_2 \) , \( v_3

8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?

9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?

10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид

1) ​ \( x=1t \) ​ (м)
2) \( x=2+3t \) (м)
3) \( x=2-1t \) (м)
4) \( x=4+2t \) (м)

11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость

ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит

12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.

1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось

13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?

источник

На данном уроке, тема которого: «Определение координаты движущегося тела» мы поговорим о том, как можно определять место нахождения тела, его координату. Поговорим о системах отсчета, рассмотрим для примера задачу, а также вспомним, что такое перемещение

Представьте: вы изо всей силы бросили мяч. Как определить, где он будет находиться через две секунды? Можно подождать две секунды и просто посмотреть, где он. Но, даже не глядя, вы приблизительно можете предсказать, где будет мяч: бросок был сильнее обычного, направлен под большим углом к горизонту, значит, полетит высоко, но недалеко… Используя законы физики, можно будет точно определить положение нашего мяча.

Определить положение движущегося тела в любой момент времени – это и есть основная задача кинематики.

Начнем с того, что у нас есть тело: как определить его положение, как объяснить кому-то, где оно находится? Об автомобиле мы скажем: он на дороге за 150 метров перед светофором или на 100 метров за перекрестком (см. рис. 1).

Рис. 1. Определение местоположения машины

Или на трассе за 30 км к югу от Москвы. О телефоне на столе скажем: он сантиметров на 30 правее клавиатуры или рядом с дальним углом стола (см. рис. 2).

Рис. 2. Положение телефона на столе

Заметьте: мы не сможем определить положение автомобиля, не упомянув другие объекты, не привязавшись к ним: светофор, город, клавиатуру. Мы определяем положение, или координаты, всегда относительно чего-то.

Координаты – это набор данных, по которому определяется положение того или иного объекта, его адрес.

Примеры упорядоченных и неупорядоченных имен

Координата тела – это его адрес, по которому мы его можем найти. Он упорядоченный. Например, зная ряд и место, мы точно определяем, где находится наше место в зале кинотеатра (см. рис. 3).

Буквой и цифрой, например e2, точно задается положение фигуры на шахматной доске (см. рис. 4).

Рис. 4. Положение фигуры на доске

Зная адрес дома, например улица Солнечная 14, мы будем искать его на этой улице, на четной стороне, между домами 12 и 16 (см. рис. 5).

Названия улиц не упорядочены, мы не будем искать Солнечную улицу по алфавиту между улицами Розовой и Тургенева. Также не упорядочены номера телефонов, номерные знаки автомобилей (см. рис. 6).

Рис. 6. Неупорядоченные имена

Эти номера, идущие подряд, – это лишь совпадение, не означающее соседства.

Мы можем задать положение тела в разных системах координат, как нам удобно. Для того же автомобиля, можно задать точные географические координаты (широту и долготу) (см. рис. 7).

Рис. 7. Долгота и широта местности

Можно выбрать любую точку в городе и считать, сколько километров нужно проехать на юг и сколько на восток, чтобы найти автомобиль (см. рис. 8).

Рис. 8. Местоположение относительно точки

Причем если мы выберем разные такие точки, то получим разные координаты, хотя они будут задавать положение одного и того же автомобиля.

Итак, положение тела относительно разных тел в разных системах координат будет разным. А что такое движение? Движение – это изменение положения тела со временем. Поэтому описывать движение мы будем в разных системах отсчета по-разному, и нет смысла рассматривать движение тела без системы отсчета.

Например, как движется стакан с чаем на столе в поезде, если сам поезд едет? Смотря относительно чего. Относительно стола или пассажира, сидящего рядом на сидении, стакан покоится (см. рис. 9).

Рис. 9. Движение стакана относительно пассажира

Относительно дерева около железной дороги стакан движется вместе с поездом (см. рис. 10).

Рис. 10. Движение стакана вместе с поездом относительно дерева

Относительно земной оси стакан и поезд вместе со всеми точками земной поверхности будут еще и двигаться по окружности (см. рис. 11).

Рис. 11. Движение стакана с вращением Земли относительно земной оси

Поэтому нет смысла говорить о движении вообще, движение рассматривается в привязке к системе отсчета.

Всё, что мы знаем о движении тела, можно разделить на наблюдаемое и вычисляемое. Вспомним пример с мячом, который мы бросили. Наблюдаемое – это его положение в выбранной системе координат, когда мы его только бросаем (см. рис. 12).

Это момент времени, когда мы его бросили; время, которое прошло после броска. Пусть на мяче нет спидометра, который показал бы скорость мяча, но ее модуль, как и направление, тоже можно узнать, используя, например, замедленную съемку.

С помощью наблюдаемых данных мы можем предсказать, например, что мяч через 5 секунд упадет за 20 м от места броска или через 3 секунды попадет в верхушку дерева. Положение мяча в любой момент времени – это в нашем случае вычисляемые данные.

Что определяет каждое новое положение движущегося тела? Его определяет перемещение, потому что перемещение – это вектор, характеризующий изменение положения. Если начало вектора совместить с начальным положением тела, то конец вектора укажет на новое положение переместившегося тела (см. рис. 13).

Рис. 13. Вектор перемещения

Рассмотрим несколько примеров на определение координаты движущегося тела по его перемещению.

Пусть тело двигалось прямолинейно из точки 1 в точку 2. Построим вектор перемещения и обозначим его (см. рис. 14).

Тело двигалось вдоль одной прямой, значит, нам будет достаточно одной оси координат, направленной вдоль перемещения тела. Допустим, мы наблюдаем за движением со стороны, совместим начало отсчета с наблюдателем.

Перемещение – вектор, удобнее работать с проекциями векторов на оси координат (у нас она одна).

Рис. 15. Проекция вектора

Как определить координату начальной точки, точки 1? Опускаем перпендикуляр из точки 1 на ось координат. Этот перпендикуляр пересечет ось и отметит на оси координату точки 1. Так же определяем координату точки 2 (см. рис. 16).

Рис. 16. Опускаем перпендикуляры на ось ОХ

Проекция перемещения равна:

При таком направлении оси и перемещения

Уравнение – это равенство, содержащее неизвестный член. В чем его смысл?

Любая задача заключается в том, что что-то нам известно, а что-то – нет, и неизвестное нужно найти. Например, тело из некоторой точки переместилось на 6 м в направлении оси координат и оказалось в точке с координатой 9 (см. рис. 17).

Рис. 17. Начальное положение точки

Как найти, из какой точки тело начало движение?

У нас есть закономерность: проекция перемещения – это разность конечной и начальной координат:

Смысл уравнения будет в том, что перемещение и конечную координату мы знаем () и можем подставить эти значения, а начальную координату не знаем, она будет неизвестным в этом уравнении:

И уже решая уравнение, мы получим ответ: начальная координата .

Рассмотрим другой случай: перемещение направлено в сторону, противоположную направлению оси координат.

Координаты начальной и конечной точек определяются так же, как и раньше, – опускаются перпендикуляры на ось (см. рис. 18).

Рис. 18. Ось направлена в другую сторону

Проекция перемещения (ничего не меняется) равна:

Обратите внимание, что

Как видим, ничего не меняется: в проекции на ось координат конечное положение равно начальному положению плюс проекция перемещения. В зависимости от того, в какую сторону тело переместилось, проекция перемещения будет положительной или отрицательной в данной системе координат.

Рассмотрим случай, когда перемещение и ось координат направлены под углом друг к другу. Теперь одной оси координат нам недостаточно, нужна вторая ось (см. рис. 19).

Рис. 19. Ось направлена в другую сторону

Теперь перемещение будет иметь ненулевую проекцию на каждую ось координат. Эти проекции перемещения будут определяться, как и раньше:

Заметьте, модуль каждой из проекций в этом случае меньше модуля перемещения. Модуль перемещения можем легко найти, используя теорему Пифагора. Видно, что если построить прямоугольный треугольник (см. рис. 20), то его катеты будут равны

Рис. 20. Треугольник Пифагора

Тогда по теореме Пифагора запишем:

Автомобиль находится в 4 км к востоку от гаража. Воспользуйтесь одной осью координат, направленной на восток, с началом отсчета в гараже. Укажите координату автомобиля в заданной системе через 3 минуты, если автомобиль этим временем ехал со скоростью 0,5 км/мин на запад.

В задаче ничего не сказано о том, что автомобиль поворачивал или изменял скорость, поэтому считаем движение равномерным прямолинейным.

Изобразим систему координат: начало координат у гаража, ось х направлена на восток (см. рис. 21).

Рис. 21. Направление оси Ох

Автомобиль изначально был в точке и двигался по условию задачи на запад (см. рис. 22).

Рис. 22. Движение автомобиля на запад

Проекция перемещения, как мы неоднократно писали, равна:

Мы знаем, что автомобиль проезжал по 0,5 км каждую минуту, значит, чтобы найти суммарное перемещение, нужно скорость

На этом физика закончилась, осталось математически выразить искомую координату. Выразим ее из первого уравнения:

Осталось подставить числа и получить ответ. Не забывайте, что автомобиль двигался на запад против направления оси х, это значит, что проекция скорости отрицательна: .

Главное, чем мы сегодня пользовались для определения координаты, – выражение для проекции перемещения:

И из него мы уже выражали координату:

При этом сама проекция перемещения может быть задана, может вычисляться как , как в было в задаче о равномерном прямолинейном движении, может вычисляться сложнее, что нам еще предстоит изучить, но в любом случае координату движущегося тела (где тело оказалось) можно определить по начальной координате (где тело было) и по проекции перемещения (куда переместилось).

На этом наш урок окончен, до свидания!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В., Гутник Е.М. Физика: 9 класс. Учебник для общеобразовательных учреждений. – 14-е изд. – М.: Дрофа, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Что такое перемещение, путь, траектория?
  2. Как можно определить координаты тела?
  3. Запишите формулу для определения проекции перемещения.
  4. Как будет определяться модуль перемещения, если перемещение имеет проекции на две оси координат?

источник

Читайте также:  Как приготовить томаты в собственном соку в домашних условиях на зиму
Adblock
detector