Меню

Чему равна масса 1 м3 углекислого газа co2

Углекислота, или углекислый газ, при естественных условиях находится в газообразном состоянии, не имеет запаха и цвета, на вкус кислая. Содержание диоксида СО2 (диоксида углерода) в атмосфере Земли составляет 0,03–0,04%, то есть от 0,3 до 0,4 мл на 1 литр воздуха и в жидкой форме при нормальном атмосферном давлении его не существует, переходит сразу из твердого состояния в газообразное. Он тяжелее воздуха в полтора раза. В естественных условиях плотность или удельный вес углекислого газа составляет 1,977 кг/м3.

Таблица перерасчета удельного веса углекислого газа (плотности) в метрической системе

т/м3 кг/м3 г/м3 мл/м3 кг/л г/л мл/л г/дм3 г/мл мг/мл
0.001977 1.977 1 977 1 977 000 0.001977 1.977 1 977 1.977 0.001977 1.977

Источниками углекислоты, которой в доисторические времена в атмосфере нашей планеты содержалось более 80%, являются гнилостные процессы, вулканические выделения, процессы горения и окисления. Выделяют углекислый газ люди и животные в процессе дыхания. Многие не знают, но в ночное время растения тоже выделяют углекислоту в атмосферу.

СО2 выполняет основополагающую роль в жизни всей планеты и всех ее живых существ. Основным «заданием» можно считать поддержание процесса фотосинтеза, также он принимает участие во множестве метаболических процессов каждой живой клетки. Он не токсичен и не поддерживает дыхания, хотя играет важнейшую роль в самом его процессе.

Интересно, что в крови плода количество кислорода в 4 раза меньше, чем у взрослого человека, а углекислоты в 2 раза больше. При увеличении процентного соотношения кислорода, эмбрион погибает.

СО2 – один из необходимых факторов в поддержании кислотно-щелочного баланса крови, регулирует активность ферментов в организме. Для нормальной жизнедеятельности человеческого организма, количество углекислоты в крови должно быть на уровне 7–7,5 %, снижение этого уровня до 4 % грозит гибелью организма. Его нехватка включает защитную систему, начинаются спазмы сосудов и гладкой мускулатуры, увеличивается количество слизи в дыхательных путях, образуется больше холестерина, вследствие чего уплотняются клеточные мембраны, препятствуя транспортировке веществ. Все это приводит к глубокому кислородному голоданию (согласно эффекту Бора).

Итак, согласно результатам научных исследований, СО2 незаменим при:

  • дыхании,
  • метаболизме,
  • регуляции внутренних гормональных процессов,
  • возбуждении дыхательного центра,
  • успокоении нервной системы,
  • расширении сосудов.

Круговорот веществ в природе обеспечивает относительно стабильный уровень углекислоты в атмосфере. При содержании животных крайне важным является поддержания естественного уровня СО2 в помещении. Соответствующая чистота, вентиляция и правильное размещение животных решают проблему перенасыщения углекислого газа. Напомним, что его нормальное содержание – 0,3-0,4 мл на 1 литр воздуха. При несоблюдении условий содержания животных количество углекислоты может увеличиться до 1% и более.

Например, лошадь выделяет около 130 л СО2 в час, корова – до 200 л, овцы – до 30 л, свиньи – до 90 л. Если в закрытом помещении концентрация углекислого газа превысит 0,5%, это будет негативно сказываться на жизнедеятельности организма, наступает отравление, снижается продуктивность и иммунитет, проявляется вялость, апатия, потеря аппетита, животные худеют.

Углекислота жизненно необходима для всех живых организмов нашей планеты. Если его не станет, все живое погибнет, но если его будет очень много, результат окажется тот же.

источник

В сварочном производстве используется термин «углекислый газ» см. ГОСТ 2601. В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота», а в ГОСТ 8050 – термин «двуокись углерода».

Существует множество способов получения углекислого газа, основные из которых рассмотрены в статье Способы получения углекислого газа.

Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед».

Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).

Двуокись углерода термически устойчива, диссоциирует на окись углерода и кислород только при температуре выше 2000°С.

Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».

Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).

Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.

Пропуская «связанный воздух» т.е. углекислый газ CO2 через водный раствор извести Ca(OH)2 на дно осаждается карбонат кальция CaCO3. Джозеф Блэк использовал этот опыт для доказательства того, что углекислый газ выделяется в результате дыхания животных.

Жидкая двуокись углерода бесцветная жидкость без запаха, плотность которой сильно изменяется с изменением температуры. Она существует при комнатной температуре лишь при давлении более 5,85 МПа. Плотность жидкой углекислоты 0,771 г/см 3 (20°С). При температуре ниже +11°С она тяжелее воды, а выше +11°С – легче.

Удельная масса жидкой двуокиси углерода значительно изменяется с температурой, поэтому количество углекислоты определяют и продают по массе. Растворимость воды в жидкой двуокиси углерода в интервале температур 5,8-22,9°С не более 0,05%.

Жидкая двуокись углерода превращается в газ при подводе к ней теплоты. При нормальных условиях (20°С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа. При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода – поэтому если в баллоне образовался сухой лед, то испаряется он медленно.

Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).

Твердая двуокись углерода «сухой лед», по внешнему виду напоминает снег и лед. Содержание углекислого газа, получаемого из брикета сухого льда, высокое – 99,93-99,99%. Содержание влаги в пределах 0,06-0,13%. Сухой лед, находясь на открытом воздухе, интенсивно испаряется, поэтому для его хранения и транспортировки используют контейнеры. Получение углекислого газа из сухого льда производится в специальных испарителях. Твердая двуокись углерода (сухой лед), поставляемая по ГОСТ 12162.

Двуокись углерода чаще всего применяют:

  • для создания защитной среды при сварке металлов;
  • в производстве газированных напитков;
  • охлаждение, замораживание и хранения пищевых продуктов;
  • для систем пожаротушения;
  • для чистки поверхностей сухим льдом.

Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Углекислый газ является активным газом, в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие.

Ранее препятствием для применения углекислоты в качестве защитной среды являлись поры в швах. Поры вызывались кипением затвердевающего металла сварочной ванны от выделения оксиси углерода (СО) вследствие недостаточной его раскисленности.

При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:

Читайте также:  В каком знаке зодиака сажать чеснок

Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка порошковой проволокой).

Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:

где Мэ – металл (марганец, алюминий или др.).

Кроме того, и сам углекислый газ реагирует с этими элементами.

В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное – кремния, марганца, хрома, ванадия и др.

Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке неплавящимся электродом – только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом.

Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.

Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3 ) углекислый газ оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).

Углекислый газ поставляется по ГОСТ 8050. Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.

Углекислоту транспортируют и хранят в стальных баллонах по ГОСТ 949 или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы. В стандартный баллон с водяной емкостью 40 л заливается 25 кг жидкой углекислоты, которая при нормальном давлении занимает 67,5% объема баллона и дает при испарении 12,5 м 3 углекислого газа. В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10. 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги

Баллон с двуокисью углерода окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА».

источник

  • Углекислота жидкая – это, сжиженный углекислый газ под очень высоким давлением, которое обычно равно 70 атмосферам. Жидкость, как и газ, абсолютно бесцветна, имеет слегка кислый привкус.
  • Поставляется и хранится углекислота в:
    • 40-литровых герметичных баллонах, которые защищены от коррозийных разрушений – срок хранения 2 года.
    • В транспортной бочке ЦЖУ-18 – срок хранения 6 месяцев.
  • Изготавливается в соответствии с ГОСТ 8050-50 “Двуокись углерода”
  • Чтобы узнать цены и сроки поставки нажмите подробнее.

    Углекислота (СО2, двуокись углерода, диоксид углерода) – вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях – газообразном, жидком, твёрдом и сверхкритическом.

    Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться – переходить сразу в твёрдое состояние, минуя жидкую фазу.

    Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте – путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

    Жидкое состояние СО2 носит техническое название «жидкая углекислота» или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

    При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

    При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

    При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется – постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

    Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

    При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

    • Удельный вес. Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
    • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
    • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
    • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
    • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное , стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
    • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 – 1,6.

  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
  • V= R T/p – A, где
  • V – объем, м3/кг;
  • R – газовая постоянная 848/44 = 19,273;
  • Т – температура, К град.;
  • р давление, кг/м2;
  • А – дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =( 0, 0825 + (1,225)10-7 р)/(Т/100)10/3.

  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  • i’ x + i” у = i,
  • x + у = 1, где,
  • x и у – доля вещества в жидком и парообразном виде;
  • i’ – энтальпия жидкости;
  • i” – энтальпия пара;
  • i – энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  • i” у + i” z = i,
  • у + z = 1, где,
  • i” – энтальпия твердой углекислоты;
  • z – доля вещества в твердом состоянии.
  • В тройной точке для трех фаз имеются также только два уравнения
  • i’ x + i” у + i”’ z = i,
  • x + у + z = 1.
  • Зная значения i,’ i’,’ i”’ для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
  • Град.С -50 -40 -30 -20 -10 0 10 20
  • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
  • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
  • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.

  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
  • i = 169,34 + (0,1955 + 0,000115t)t – 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
  • I – ккал/кг, р – кг/см2, Т – град.К, t – град.С.
  • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же , вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Теплопроводность. Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
  • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
  • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
  • Газообразная углекислота
  • 1 130 136 142 148
  • 20 – 147 152 157
  • 40 – 173 174 175
  • 60 – – 228 213
  • 80 – – – 325
  • Жидкая углекислота
  • 50 848 – – –
  • 60 870 753 – –
  • 70 888 776 – –
  • 80 906 795 670
    Теплопроводность твердой углекислоты может быть вычислена по формуле :
    236,5/Т1,216 ст., ккал/м*час*град.С.

    Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.

  • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  • Давление, ата -15 град. 0 град. 20 град. 40 град .
  • 5 1,38 1,42 1,49 1,60
  • 30 12,04 1,63 1,61 1,72
  • 75 13,13 12,01 8,32 2,30
  • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 – 125 ати, находится в пределах 1,6016 – 1,6425.
  • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 – 39 ати 1,009 – 1,060.

  • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
  • Х = 18/44 * p’/p – p’ = 0,41 p’/p – p’ кг/кг, где
  • p’ – парциальное давление водяных паров при 100%-м насыщении;
  • р – общее давление паро-газовой смеси.

  • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
  • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 – 5 ати подчиняется закону Генри, который выражается уравнением
  • Р = Н Х, где
  • Р – парциальное давление газа над жидкостью;
  • Х – количество газа в молях;
  • Н – коэффициент Генри.

  • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
  • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
  • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

    При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

    источник

    В таблице представлены теплофизические свойства углекислого газа CO2 в зависимости от температуры и давления. Свойства в таблице указаны при температуре от 273 до 1273 К и давлении от 1 до 100 атм.

    Рассмотрим такое важное свойство углекислого газа, как плотность.
    Плотность углекислого газа равна 1,913 кг/м 3 при нормальных условиях (при н.у.). По данным таблицы видно, что плотность углекислого газа существенно зависит от температуры и давления — при росте давления плотность CO2 значительно увеличивается, а при повышении температуры газа — снижается. Так, при нагревании на 1000 градусов плотность углекислого газа уменьшается в 4,7 раза.

    Однако, при увеличении давления углекислого газа, его плотность начинает расти, причем значительно сильнее, чем снижается при нагреве. Например при давлении 10 атм. и температуре 0°С плотность углекислого газа вырастает уже до значения 20,46 кг/м 3 .

    Необходимо отметить, что рост давления газа приводит к пропорциональному увеличению значения его плотности, то есть при 10 атм. удельный вес углекислого газа в 10 раз больше, чем при нормальном атмосферном давлении.

    В таблице приведены следующие теплофизические свойства углекислого газа:

    • плотность углекислого газа в кг/м 3 ;
    • удельная теплоемкость, кДж/(кг·град);
    • теплопроводность, Вт/(м·град);
    • динамическая вязкость, Па·с;
    • температуропроводность, м 2 /с;
    • кинематическая вязкость, м 2 /с;
    • число Прандтля.

    Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

    В таблице даны теплофизические свойства углекислого газа CO2 в зависимости от температуры (в интервале от -75 до 1500°С) при атмосферном давлении. Даны следующие теплофизические свойства углекислого газа:

    По данным таблицы видно, что с ростом температуры теплопроводность и динамическая вязкость углекислого газа также увеличиваются. Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

    В таблице представлены значения теплопроводности углекислого газа CO2 в интервале температуры от 220 до 1400 К и при давлении от 1 до 600 атм. Данные выше черты в таблице относятся к жидкому CO2.

    Следует отметить, что теплопроводность сжиженного углекислого газа при увеличении его температуры снижается, а при увеличении давления — растет. Углекислый газ (в газовый фазе) становится более теплопроводным, как при увеличении температуры, так и при росте его давления.

    Теплопроводность в таблице дана в размерности Вт/(м·град). Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

    В таблице представлены значения теплопроводности углекислого газа CO2 в критической области в интервале температуры от 30 до 50°С и при давлении от 62 до 80 атм.
    Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000! Теплопроводность в таблице указана в Вт/(м·град).

    В таблице представлены значения теплопроводности диссоциированного углекислого газа CO2 в интервале температуры от 1600 до 4000 К и при давлении от 0,01 до 100 атм. Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!
    Теплопроводность в таблице указана в Вт/(м·град).

    В таблице представлены значения теплопроводности жидкого углекислого газа CO2 на линии насыщения в зависимости от температуры.
    Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!
    Теплопроводность в таблице указана в Вт/(м·град).

    источник

    Углекислый газ получите, используя прибор из аппарата Киппа (1), двух промывных склянок (2, 3) и плоскодонной колбы (4). (см рис).

    Рис. Прибор для определения молярной массы углекислого газа

    Для определения молярной массы углекислого газа возьмите сухую плоскодонную колбу ёмкостью 250 мл с хорошо пригнанной резиновой пробкой. При помощи карандаша по стеклу сделайте отметку на стёклышке колбы в том месте, где кончается пробка. Взвесьте с точностью до 0,01 г колбу с пробкой. При заполнении колбы углекислым газом газоотводную трубку аппарата Кипа опустите до дна колбы. Когда колба заполнится углекислым газом (как это можно проверить?), медленно (почему?) выньте газоотводную трубку, закройте колбу пробкой и взвесьте. Заполнение колбы углекислым газом произведите несколько раз, до тех пор, пока не будет достигнута постоянная масса. Определите объём колбы, наполнив её водой до метки. Отметьте температуру и давление.

    Масса колбы с воздухом – m1, г

    Масса колбы с углекислым газом – m2, г

    Атмосферное давление (по барометру) – Р, мм.рт.ст.

    Объём колбы при условиях опыта – V1, мл

    Объём воздуха в колбе при н.у. – V, мл

    Масса воздуха в объёме колбы – m3, г

    (масса 22,4 л воздуха при н.у. равна 29 г)

    Масса пустой колбы (стекло и пробка) – m4, г

    Масса углекислого газа в объёме колбы – m5, г

    Относительная плотность углекислого газа по воздуху – DВ(CO2)

    Молярная масса углекислого газа –M(CO2)

    (рассчитать по уравнению Менделеева-Клапейрона или по относительной плотности по воздуху, или используя следствие из закона Авогадро)

    Абсолютная и относительная ошибки опыта – г/моль; %

    Вопросы к допуску

    1. Как пользоваться аппаратом Киппа, как заряжать его?

    2. Как очищать углекислый газ, полученный в аппарате Киппа, от каких примесей? Какие реагенты используются для поглощения примесей?

    3. Как проводить опыт 4, чтобы гарантировать полное вытеснение воздуха углекислым газом?

    4. Как определяется объём газа в колбе?

    5. Расскажите порядок выполнения опыта.

    Вопросы к защите

    1. Что называется абсолютной плотностью газа?

    2. Что называется относительной плотностью газа?

    3. Что называется плотностью газа по водороду?

    4. Как можно вычислить молекулярную массу веществ, зная плотность его паров по воздуху?

    5. Как изменится плотность газа при изменении давления?

    6. Определите давление газа, если известно, что в сосуде объемом 10 л при 57 0 С находится 6*10 22 молекул.

    7. Рассчитайте число молекул в м 3 газа при 24 0 С и 10 мм.рт.ст.

    8. Вычислить плотность по водороду газовой смеси, состоящей из одной объемной части аммиака и двух объемных частей оксида углерода (IV).

    9. Вычислить массу 1 л газовой смеси, имеющей объемный состав: 40 % CO; 12 % O2; 48 % N2 при 740 мм.рт.ст. и 25 0 С.

    10. Плотность газа по воздуху равна: а) 0,9; б) 2,45. Определить массу 1л каждого газа.

    Не нашли то, что искали? Воспользуйтесь поиском:

    Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9021 – | 7251 – или читать все.

    176.59.100.63 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

    Отключите adBlock!
    и обновите страницу (F5)

    очень нужно

    источник

Adblock
detector