Меню

Биосистема это совокупность ее взаимодействующих частей

Весь окружающий нас мир – это совокупность природных факторов и антропогенного воздействия, что существуют и меняются на протяжении всей истории человечества. Энтропия разрывает этот мир, но он продолжает существовать в динамическом равновесии. В состоянии, которое очень легко нарушить, и при этом пострадают в первую очередь биосистемы. Что такое биосистема в биологии, каковы ее уровни и составляющие – тема данной статьи.

В систему объединяют функциональные элементы, которые связаны между собой и выполняют одну функцию как единое целое. Биологическая система – это совокупность упорядоченных, взаимодействующих и взаимозависимых живых структурных элементов. Они образуют единое целое как система ступеней, вытекающих одна из другой и выполняющих совместную функцию.

Способность всего живого из хаотичного теплового движения атомов и молекул создать порядок – это самая удивительная и глубокая особенность жизни. Фундаментальными свойствами жизни в биологии считают: способность живого к саморегуляции, самовоспроизведение и самообновление. К надстройке или необходимым атрибутам жизни относятся обмен веществ в организме и с окружающей средой (питание, выделение и дыхание), движение, раздражимость по принципу обратной связи, возможности адаптации, рост и развитие в процессе онтогенеза.

К основным свойствам относятся:

  • Единство функционала (биохимического, физиологического).
  • Целостность (сумма элементов не равна свойствам системы).
  • Ступенчатость (система состоит из подсистем).
  • Адаптация (способность к изменениям по принципу обратной связи).
  • Динамическая устойчивость.
  • Способность развиваться и самовоспроизводиться.

Живая материя образует гомогенные системы со своим типом взаимодействий элементов, пространственным и временным масштабом процессов. Эти гомогенные биосистемы занимают свое место в системе живой материи. Основных уровней биосистем восемь:

  • молекулярный;
  • клеточный;
  • тканевый;
  • органный;
  • онтогенетический или организменный;
  • популяционный и видовой;
  • экосистемный или биогеоценотический;
  • биосферный.

Все уровни перетекают один в другой, включаются друг в друга, переплетаются в единство всего живого на планете. Они символизируют многообразие жизненных форм и представляют собой единицы материи со своей спецификой процессов и проявлений. Жизнь возникла, существует и меняется в целостных биосистемах. Что такое биосистемы – это открытые системы, способные к росту и развитию, динамически устойчивые и самовоспроизводящиеся. Тогда как системы неживые – закрыты, статичны и склонны к деградации.

Описание организации таких систем включает выделение подсистем или компонентов биосистемы. Далее исследуют все аспекты существования биосистем, а именно:

  • Структура. Анализ организации структуры проводится с помощью метода классифицирования – многоступенчатого и последовательного разделения совокупности для получения знаний о составе, связях и устройстве системы.
  • Функционал. Изучение функциональной структуры подразумевает определение функции, которую каждый компонент системы выполняет во всем процессе.
  • Основные свойства биосистем. Это показатель сущности системы в отношениях с другими, их закономерные взаимосвязи.

По такой схеме опишем самые главные примеры биосистем.

Структурной составляющей данной биосистемы является мембранный аппарат, цитоплазма, органеллы и нуклеотид (ядро). Базовый уровень – молекулярный. Функциональная составляющая данной системы – это согласованная работа всех структур. Основные свойства будут определяться структурно-функциональной спецификой цитоплазматической мембраны, цитоплазмы, органелл и ядра.

На этом уровне на первое место выходят системы регуляции и приспособительные способности, как механизм сохранения целостности и упорядоченности в условиях изменяющихся условий жизни. Структурная организация различна (от безъядерных, одноклеточных до многоклеточных) и наиболее разнообразна. Базовый уровень – клетка. Функциональные особенности: дифференциация клеток, тканей, органов подразумевает более сложные уровни структурного состава; взаимозависимость дифференцированных элементов друг от друга; интеграция и внутренние связи подсистем. Основными свойствами на этом уровне будет общее усложнение и разнообразие свойств живой материи. Например, свойство материи к воспроизводству себе подобных на этом уровне представлено бесполым, половым и вегетативным способом размножения.

Что такое биосистема на данном уровне – это единица эволюционного процесса, как движущей силы появления всего многообразия жизни на Земле. Именно в ключе эволюционного учения этот уровень становится основополагающим. Вид, как совокупность организмов, обладающая внешним и внутренним сходством, свободно скрещивающихся между собой (для панмиктичных видов) и дающих фертильное потомство, обитающих на определенной территории довольно длительный период времени и имеющих общих филогенетических предков – вот структурная единица данного уровня. Функциональная составляющая: индивидуальный приспособительный потенциал особи, внутривидовая конкуренция и естественный отбор. Вид – закрытая система в генетическом аспекте. Ведь именно порог не скрещиваемости с представителями других видов дает организмам видовую специфичность.

Другой пример того, что такое биосистема, – биосфера, как система наивысшего порядка. Структурный компонент – биотический (живые организмы и продукты их жизнедеятельности) и абиотический (химические компоненты и физические условия). Элементарная единица структуры – биогеоценоз. Функциональный аспект – круговорот веществ в природе, наличие биохимических циклов, для которых характерны открытость и замкнутость. Главные функции биотического компонента – окислительно-восстановительная, концентрационная и газовая. Основные свойства – свойства живой материи.

источник

Биосистема – это сложная сеть биологически соответствующих организаций, от глобальных до субатомных. Эта концептуальная иллюстрация отражает множественные гнездовые системы в природе – популяции организмов, органы и ткани. В микро- и наноскопическом масштабе примерами биологических систем являются клетки, органеллы, макромолекулярные комплексы и регуляторные пути.

В биологии организм является любой смежной живой системой наряду с животными, растениями, грибами, протистами или бактериями. Все известные типы существ на Земле способны в некоторой степени реагировать на стимулы, размножаться, расти, развиваться и саморегулироваться (гомеостаз).

Организм как биосистема состоит из одной или нескольких клеток. Большинство одноклеточных организмов имеет микроскопический масштаб и, следовательно, относятся к микроорганизмам. Люди – это многоклеточные организмы, состоящие из многих триллионов клеток, сгруппированных в специализированные ткани и органы.

Оценки количества современных видов Земли колеблются от 10 до 14 миллионов, из которых только около 1,2 миллиона были официально задокументированы.

Термин «организм» напрямую связан с термином «организация». Можно дать следующее определение: это сборка молекул, функционирующих как более или менее устойчивое целое, которое проявляет свойства жизни. Организм как биосистема – это любая живая структура, такая как растение, животное, гриб или бактерии, которая способна расти и размножаться. Из этой категории исключаются вирусы и возможные антропогенные неорганические формы жизни, поскольку они зависят от биохимического механизма клетки-хозяина.

Человеческий организм также можно назвать биосистемой. Это совокупность всех органов. Наши тела состоят из ряда биологических систем, которые выполняют конкретные функции, необходимые для повседневной жизни.

  • Работа системы кровообращения заключается в перемещении крови, питательных веществ, кислорода, углекислого газа и гормонов по органам и тканям. Она состоит из сердца, крови, кровеносных сосудов, артерий и вен.
  • Пищеварительная система состоит из ряда соединенных органов, которые вместе позволяют организму поглощать и переваривать пищу, а также занимается удалением отходов. Она включает в себя рот, пищевод, желудок, тонкую кишку, толстую кишку, прямую кишку и анус. Печень и поджелудочная железа также играют важную роль в пищеварительной системе, потому что они производят пищеварительные соки.
  • Эндокринная система состоит из восьми основных желез, которые выделяют гормоны в кровь. Эти гормоны, в свою очередь, путешествуют по разным тканям и регулируют различные функции организма.
  • Иммунная система является защитой организма от бактерий, вирусов и других вредных патогенов. Она включает лимфатические узлы, селезенку, костный мозг, лимфоциты и лейкоциты.
  • Лимфатическая система включает в себя лимфатические узлы, протоки и сосуды, а также играет роль в качестве защитных сил организма. Ее основная задача – это образовать и перемещать лимфу, прозрачную жидкость, содержащую белые кровяные клетки, которые помогают организму бороться с инфекцией. Лимфатическая система также удаляет избыток лимфатической жидкости из телесных тканей и возвращает ее в кровь.
  • Нервная система контролирует как добровольные (например, сознательное движение), так и непроизвольные действия (например, дыхание), и посылает сигналы к различным частям тела. Центральная нервная система включает головной и спинной мозг. Периферическая нервная система состоит из нервов, которые соединяют каждую часть тела с центральной нервной системой.
  • Мышечная система тела состоит из около 650 мышц, которые помогают в движении, кровообращении и выполняют ряд других физических функций.
  • Репродуктивная система позволяет людям размножаться. Мужская репродуктивная система включает пенис и семенники, которые производят сперму. Женская репродуктивная система состоит из влагалища, матки и яичников. Во время зачатия сперматозоиды сливаются с яйцеклеткой, которая создает оплодотворенное яйцо, что растет в матке.
  • Наши тела поддерживаются скелетной системой, состоящей из 206 костей, которые связаны сухожилиями, связкями и хрящами. Скелет не только помогает нам двигаться, но также участвует в производстве клеток крови и хранении кальция. Зубы также являются частью скелетной системы, но они не считаются костями.
  • Дыхательная система позволяет принимать жизненно важный кислород и удалять углекислый газ в процессе, который мы называем дыханием. Она состоит в основном из трахеи, диафрагмы и легких.
  • Мочевая система помогает устранить ненужный продукт под названием мочевина из организма. Она состоит из двух почек, двух мочеточников, мочевого пузыря, двух мышц сфинктера и уретры. Моча, произведенная почками, перемещается вниз по мочеточникам в мочевой пузырь и выходит из организма через уретру.
  • Кожа является самым большим органом человеческого тела. Она защищает нас от внешнего мира, бактерий, вирусов и других патогенов, а также помогает регулировать температуру тела и устранять отходы через пот. В дополнение к коже, покровная система включает волосы и ногти.

У людей есть пять жизненно важных органов, которые необходимы для выживания. Это мозг, сердце, почки, печень и легкие.

  • Человеческий мозг является центром управления тела, приема и передачи сигналов в другие органы через нервную систему и через секретируемые гормоны. Он отвечает за наши мысли, чувства, память и общее восприятие мира.
  • Человеческое сердце является ответственным за перекачку крови по всему нашему телу.
  • Работа почек заключается в удалении отходов и дополнительной жидкости из крови.
  • Печень имеет множество функций, в том числе детоксикация вредных химических веществ, распад лекарственных средств, фильтрация крови, секреция желчи и производство белков для свертывания крови.
  • Легкие отвечают за удаление кислорода из воздуха, которым мы дышим и перенос его в нашу кровь, где он может быть направлен в наши клетки. Легкие также удаляют углекислый газ, который мы выдыхаем.
  • В человеческом теле содержится около 100 триллионов клеток.
  • Средний взрослый совершает более 20 000 вдохов в день.
  • Каждый день почки обрабатывают около 200 квартов (50 галлонов) крови, чтобы отфильтровать около 2 кварт отходов и воды.
  • Взрослые люди выделяют около четверти с половиной (1,42 литра) мочи каждый день.
  • Человеческий мозг содержит около 100 миллиардов нервных клеток.
  • Вода составляет более 50 процентов от веса тела взрослого человека.

Живой организм является определенной организацией живой материи. Он является биосистемой, которая, как и любая другая система, включает в себя взаимосвязанные между собой элементы, например молекулы, клетки, ткани, органы. Все в этом мире из чего-то состоит, определенная иерархичность свойственна и живому организму. Это означает, что из молекул состоят клетки, из клеток – ткани, из тканей – органы, из органов – системы органов. Свойства биосистем также включают эмерджентность, что означает появление качественно новых характеристик, присутствующих при объединении элементов и отсутствующих на предыдущих уровнях.

Читайте также:  Как вырастить каштан из ореха в домашних условиях в горшке

Одну единственную клетку также можно назвать полноценной биосистемой. Это элементарная единица, имеющая свое строение и собственный обмен веществ. Она способна существовать самостоятельно, воспроизводить себе подобных и развиваться по собственным законам. В биологии есть целый раздел, посвященный ее изучению, который называется цитологией или клеточной биологией.

Клетка – это элементарная живая система, включающая в себя отдельные компоненты, которые имеют специфические особенности и выполняют свои функциональные обязанности.

Биосистема состоит из однотипного живого вещества: от макромолекул и клеток до популяционных сообществ и экосистем. В ней существуют следующие уровни организации:

  • генный уровень;
  • клеточный уровень;
  • органы и системы органов;
  • организмы и системы организмов;
  • популяции и популяционные системы;
  • сообщества и экосистемы.

Биологическое составляющие различных уровней организации в определенном порядке вступают во взаимодействие с неживой природой, энергией и другими абиотическими компонентами и веществами. В зависимости от масштаба, разные системы являются предметами изучения разных дисциплин. Генами занимается генетика, клетки рассматривает цитология. Органы берет на себя физиология. Организмы изучает ихтиология, микробиология, орнитология, антропология и так далее.

источник

Многообразие форм живых организмов

• что общего между живой и неживой природой;

• чем различаются между собой живая и неживая природа.

Организмы в разных средах жизни. Жизнь протекает на большом пространстве земной поверхности.

Оболочку Земли, где существует жизнь в её различных формах, называют биосферой (греч. bios — «жизнь» и sphaira — «шар»).

жизни организмов: водную, наземно-воздушную, почвенную, организменную. Различные условия сред жизни порождают многообразие форм живых существ и обусловливают их специфические свойства.

Так, живые организмы, населяющие водную среду, — гидробионты (греч. hydor — «вода» и biontos — «живущий») способны к обитанию в плотной и вязкой водной среде: дышат растворённым в воде кислородом, размножаются, находят пищу и укрытия, передвигаются (плавают — «парят») в разных направлениях в толще воды.

Иными качествами наделены организмы, населяющие наземно-воз- душную среду жизни, — аэробиопты (греч. аег — «воздух» и biontos — «живущий»). В процессе эволюции они приобрели способность существовать в менее плотной (по сравнению с водной) среде — при обилии воздуха и кислорода, резком колебании освещённости, суточных и сезонных температур, при дефиците влаги.

Обитатели почвенной среды — эдафобионты (греч. edaphos — «почва» и biontos — «живущий») отличаются небольшими размерами тела, способностью обходиться без света, питаться мелкими животными и органическими веществами погибших организмов, попавших в почву.

Организмы, обитающие внутри другого живого существа — хозяина (в его кишечнике, крови, мышечной ткани, дыхательной системе, печени, кожных покровах и пр.), в большинстве случаев очень мелкие живые существа. Их называют эидобиомтами (от греч. endon — «внутри» и biontos — «живущий»). Некоторые эндобионты являются паразитами, т. е. питаются веществами тела хозяина, другие полезны хозяину, а третьи — нейтральны.

Системное разнообразие живого. В историческом развитии жизни на Земле возникло разнообразие форм живого, обусловленное не только обитанием в разных средах жизни, но и уровнем сложности организмов. В каждой среде обитают различные одноклеточные и многоклеточные существа. Самые древние из них — многочисленные прокариоты (бактерии), более поздние — эукариоты (растения, грибы, животные).

Бактерии, растения, грибы и животные выделяют в отдельные царства клеточных организмов. Как особое царство живой природы рассматривают и неклеточные организмы — вирусы. Представители разных царств отличаются друг от друга по многим признакам. Однако, несмотря на различия, все они существуют в форме организмов. Это — особенность живой материи.

В настоящее время биология рассматривает разнообразие живых форм на основе учения о системе. Для системы характерно наличие нескольких различных частей (компонентов) и связей между ними (структуры), обеспечивающих её целостность. Так как организм представляет собой целостную систему взаимодействующих живых компонентов (органов), его называют живой системой или биологической системой (биосистемой)

Растительный организм как биосистема – совокупность взаимодействующих органов, тканей и клеток

Биосистема — это форма жизни, обусловленная взаимодействием живых компонентов.

В природе существуют биосистемы разной сложности. Так, каждая клетка является биосистемой. Жизнедеятельность и целостность клетки обусловлены взаимосвязью и взаимодействием всех её внутриклеточных компонентов (молекул, химических соединений и органоидов).

Многоклеточный организм по отношению к клетке — структурно более сложная биосистема, поскольку включает различные органы, состоящие из клеток.

В живой природе кроме клеток и организмов есть и другие, более сложные биосистемы — популяции, виды, биогеоценозы, биосфера. При этом каждая из биосистем являет собой единое целое, состоящее из множества взаимодействующих частей. Например, популяция состоит из взаимодействующих организмов (особей), вид образуют взаимодействующие внутривидовые структуры (популяции).

Разные по сложности биосистемы представляют собой особые эволюционно сложившиеся обособленные формы жизни на Земле, или структурные уровни организации жизни

Живые организмы состоят из химических веществ — неорганических и органических соединений. Из комплексов биологических молекул образуются надмолекулярные структуры — клеточные. Клетка — элементарная структурная единица организмов. Любой одноклеточный или многоклеточный организм способен к самостоятельному существованию. Организмы одного вида, обитающие на определённой территории, образуют популяцию. Популяции, как части видов, взаимодействуют между собой, входят в состав биогеоценозов. Из биогеоценозов образована биосфера Земли.

Таким образом, на Земле имеется огромное разнообразие форм жизни. В одном случае оно объясняется условиями сред жизни на планете; в другом — историческим ходом развития живой материи — эволюцией, в результате которой на Земле появились различные многочисленные царства организмов; в третьем — сложностью структуры различных биосистем.

Компоненты и явления основных уровней организации жизни

источник

19 мая Выпустили приложение для телефона —

15 мая Повтори весь материал ЕГЭ на курсе Умскул и прибавь к результату 20 баллов.

− Учитель Думбадзе
из школы 162 Кировского района Петербурга.

ЧИТАТЬ ВСЕ НОВОСТИ декабря На нашем сайте размещён курс русского языка Людмилы Великовой.

3 мая Ещё один вариант досрочного ЕГЭ по математике.

14 апреля Вариант резервного дня ЕГЭ по математике.

13 апреля Вариант досрочного ЕГЭ по физике.

12 апреля Вариант досрочного ЕГЭ по информатике.

17 апреля Кратко о специальной теории относительности.

Наша группа ВКонтакте
Мобильные приложения:

Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны.

По каким принципам организованы биологические системы?

2) высокая энтропия системы

4) иерархичность – соподчинение элементов и частей

5) оптимальность конструкции

Одним из прин­ци­пов ор­га­ни­за­ции любой био­ло­ги­че­ской си­сте­мы яв­ля­ет­ся её от­кры­тость для ве­ществ, энер­гии и ин­фор­ма­ции. Раздражимость — это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить.

Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой, называются рефлексами. Организмы, не имеющие нервной системы, лишены рефлексов, и их реакции выражаются в изменении характера движения (таксисы) или роста (тропизмы).

Высокая упорядоченность биосистем достигается посредством реализации в их строение принципа оптимальности конструкции. Он реализован в Х. составе тел организма.Биосистемы построены в соответствии с принципом управляемости , обеспечивающим их переход из одного состояния в другое. Биологические системы — это объекты различной сложности, имеющие несколько уровней структурно-функциональной организации (это пункт 4) иерархичность – соподчинение элементов и частей) и представляющие собой совокупность взаимосвязанных и взаимодействующих элементов. Примерами биологических систем являются: клетка, ткани, органы, организмы, популяции, виды, биоценозы, экосистемы разных рангов и биосфера.

Представляя собой совокупность взаимосвязанных и взаимодействующих элементов, биологические системы обладают свойствами целостности (несводимость свойств системы к сумме свойств её элементов), относительной устойчивости, а также способностью к адаптации по отношению к внешней среде, развитию, самовоспроизведению и эволюции.

Любая биологическая система является динамической — в ней постоянно протекает множество процессов, часто сильно различающихся во времени. В то же время биологические системы — открытые системы, условием существования которых служит обмен энергией, веществом и информацией как между частями системы (или подсистемами), так и с окружающей средой.

Энтропия это свойство состояния изолированной (или принимаемой за таковую) физической системы, характеризуемое количеством самопроизвольного изменения, на которое она способна.

Живой организм с точки зрения протекающих в нем физико-химических процессов можно рассматривать как сложную открытую систему, находящуюся в неравновесном, нестационарном состоянии. Для живых организмов характерна сбалансированность процессов обмена, ведущих к уменьшению энтропии. Конечно, с помощью энтропии нельзя охарактеризовать жизнедеятельность в целом, так как жизнь не сводится к простой совокупности физико-химических процессов. Ей свойственны другие сложные процессы саморегуляции.

источник

БИОСИСТЕМА — система, состоящая из однотипного живого вещества: макромолекулы, клеточные структуры, сами клетки, ткани, органы, их системы, индивид, особь.[ . ]

Биосистема есть частный вид наиболее сложных систем, построенных на основе белковых соединений. Поэтому системный подход в экологии очень популярен.[ . ]

Биосистема имеет несколько уровней организации: первый — гены и определяемые ими генетические системы; второй — клетки и составляемые ими клеточные системы; следующий уровень — органы и системы органов; затем — организмы и системы организмов, популяции и популяционные системы, сообщества и экосистемы.[ . ]

Биосистемы – это биологические системы, в которых биотические компоненты разных уровней организации (от генов до сообществ) упорядоченно взаимодействуют с абиотическими компонентами (энергией и веществом), составляя единое целое с окружающей физической средой. Биосистемы разных уровней изучаются различными дисциплинами: гены – генетикой, клетки -цитологией, органы – физиологией, организмы – ихтиологией, микробиологией, орнитологией, антропологией и др.[ . ]

Полагают, что в биосистеме в отличие от технических систем, избыточность функционирующих элементов достигается не только простым увеличением совокупности мало надежных элементов, но также их поочередным функционированием. При высокой нагрузке на систему в активное состояние переходит дополнительное количество “отдыхающих” элементов, поэтому задача резервирования в физиологическом смысле состоит не в том, чтобы поддерживать высокий уровень функционирования системы при перегрузках, а в том, чтобы обеспечить ее элементам режим, исключающий их необратимое нарушение (Федоров, 1988).[ . ]

Каждый уровень биосистемы характеризуется собственными, только ему присущими свойствами, а кроме того, обладает суммой свойств входящих в него подсистем-комповевтов. Извеотный принцип весводамости свойств целого к сумме свойств его частей следует хорошо помнить при изучении экологии.[ . ]

Экология изучает биосистемы, включающие жизнь на уровне выше организмов. Биосистемы, являющиеся объектом изучения экологов, были названы экосистемами (А.Тэнсли, 1935 г.); иногда их называют биогеноценозом (В.Н.Сукачев, 1945 г.). Экосистема – одно из фундаментальных понятий в экологии. Как известно, в широком смысле под системой обычно понимается совокупность элементов, находящихся в определенных отношениях и связях друг с другом, в результате которых образуется целостность и единство совокупности.[ . ]

Читайте также:  Какие овощи могут расти в тени и полутени

Взаимоотношения в биосистеме макроорганизм— микроорганизм характеризуются взаимной адаптацией и совершенствованием системы паразитизма.[ . ]

Нарушения гомеостаза в биосистемах, возможные причины и следствия.[ . ]

Важнейшим фактором обеспечения надежности биосистемы является ее структурная и функциональная гетерогенность. Это общее положение, которое сейчас уже не требует специального доказательства. Вполне вероятно, что существуют специальные механизмы поддержания гетерогенности биосистем. Гетерогенность – результат изменчивости (лабильности) клеток и организмов. Одной из причин клеточной гетерогенности является неоднозначность матричных процессов (репликации, транскрипции, трансляции), которые могут осуществляться поливариантно, т.е. несколькими способами (Инге-Вечтомов, 1977). Вследствие гетерогенности молекул матричной РНК и последующей поливариантной трансляции возникает полиморфизм белков. Это важный фактор при молекулярном отборе в процессах самосборки клеточных структур.[ . ]

Правило эквивалентности в развитии биосистем: биосистемы способны достигнуть конечного (финального) состояния (фазы) развития независимо от степени нарушения начальных условий своего развития.[ . ]

Спектр уравнений организации жизни (уровни биосистемы)

Организм человека — открытая для окружающей среды биосистема, важнейшей стратегической задачей которой является сохранение гомеостаза, что связано с нормальным функциональным состоянием его распознающих систем. В отношении биологических факторов такой системой служит система иммунитета. Снижение иммунологической реактивности организма вследствие воздействия деформированной среды обитания, а также общей реактивности способствует возникновению гнойно-воспалительных процессов, вызываемых условно-патогенными микробами, возможности сенсибилизации организма, формирования банка плазмид, мутагенного воздействия и др.[ . ]

Вместе с тем популяция обладает и чертами сходства с организмом как биосистемой, так как имеет определенную структуру, целостность, генетическую программу самовоспроизведения, способность к авторегуляции и адаптации, свое коллективное материально-энергетическое хозяйство. Популяции являются реальными единицами биомониторинга, эксплуатации и охраны природных экосистем. Взаимодействие людей с видами организмов, находящихся в среде, в природном окружении или под хозяйственным контролем человека, опосредуется, как правило, через популяции. Это могут быть штаммы болезнетворных или полезных микроорганизмов, сорта возделываемых растений, породы разводимых животных, естественные популяции промысловых рыб и т.п. Не менее важно и то, что многие закономерности популяционной экологии относятся к популяциям человека.[ . ]

Биотическая среда экосистемы представляет собой иерархически организованные биосистемы, сохраняющие себя и развивающиеся в направлении достижения динамического равновесия. В этом смысле болезни можно рассматривать как фактор, приводящий систему в равновесие. Биотичеокая часть любой экосистемы состоит из трех основных функциональных звеньев: земельные растения в процессе фотосинтеза создают из неорганических веществ первичную продукцию; растительная масса служит пищей для животных; бактерии, грибы – с а профи ты разлагают мертвые органические остатки до простейших неорганических веществ и возвращают их в абиотическую среду.[ . ]

Практически все закономерности, характерные для живого, имеют адаптивное значение. Биосистемы вынуждены приспосабливаться к непрерывно изменяющимся условиям жизни. Эти изменения имеют разную шкалу времени — от эволюционной до сиюминутной. В вечно меняющейся среде жизни каждый вид организмов по-своему адаптирован. Это выражается правилом экологической индивидуальности: каждый вид специфичен по экологическим возможностям адаптации, двух идентичных видов не существует. Правило было сформулировано Л. Г. Раменским в 1924 г. Оно — прямое следствие и вместе с тем причина генетического разнообразия. По сути дела, и каждая особь эколого-генетически специфична и индивидуальна. Разница лишь в количественных показателях.[ . ]

Сохранение видового богатства орнитоценозов необходимо для функционирования всей биосистемы города и реализации возможностей использования методов биоиндикации. Стихийное освоение и преобразование водоемов должны смениться научно обоснованной и планомерной, включенной в градостроительные планы реконструкцией естественных участков наряду с формированием полуестественных природных комплексов в урбанизированных ландшафтах.[ . ]

Это примеры ретюпулящюнной защиты растительных систем, которая основана на разной устойчивости ее элементов. Надежность биосистемы в этих случаях достигается за счет активации одних (новых) элементов после выхода из строя других.[ . ]

Все перечисленные закономерности саморегуляции ценозов обобщаются в виде принципа стабильности: любая относительно замкнутая биосистема с проходящим через нее потоком энергии в ходе саморегуляции развивается в сторону устойчивого состояния. Этот принцип характерен не только для ценозов нижнего уровня иерархии, но и для биосферы в целом. Об этом будет упомянуто в разд. 3.10. Еще раз мы кратко вернемся к принципу стабильности в конце разд. 3.8.3. Тут важно то, что ценоз стремится к нормальной «энергетической проводимости» с помощью механизмов, обобщенно сформулированных в правилах (принципах) экологического дублирования, эквивалентности, подвижного равновесия, продукционной оптимизации и, вероятно, других, еще не открытых исследователями.[ . ]

Живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии. Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями, представляет собой экологическую систему, или экосистему.[ . ]

Шелфорд В. Э. (1877-1968) — американский ученый. Сформулировал закон толерантности (1913), который в современной трактовке гласит: лимитирующим фактором процветания биосистемы может быть как минимум, так и максимум экологического фактора; диапазон между минимумом и максимумом определяет величину толерантности биосистемы к данному фактору.[ . ]

Как отмечается в Национальной стратегии сохранения биоразнообразия России, задача сохранения биоразнообразия должна решаться в рамках высшего по отношению к биосистемам уровня – социоэкосистемного, включающего в себя социально-экономическую и природную подсистемы. Устойчивое существование социоэкосистемы возможно только в случае нормального развития всех ее частей. Игнорирование потребностей развития как социально-экономической, так и природной составляющих ведет к общему кризису и деградации как общества, так и природы.[ . ]

Система “РАСТ” позволяет добиться значительного снижения показателей БПК и ХПК, а также обесцвечивания, присутствие угля защищает биомассу от отравления, в то время как биосистема позволяет высвободить центры адсорбции активированного угля путем ассимиляции с него “органики”. Активированный уголь адсорбирует и удерживает легкие углеводороды и ароматические соединения, устраняя их испарение при аэрации.[ . ]

Обычно системы, имеющие до тысячи связей (О 6) — к очень сложным. Все реальные природные биосистемы очень сложны.[ . ]

Принцип обратной связи в обеспечении саморегуляции биологических систем на разных уровнях организации. Множественность стационарных состояний биосистем, автоколебательные процессы в биосистемах.[ . ]

Перебрасывая мостик от разд. 3.2.2, где говорилось об общих закономерностях внутреннего развития систем, следует вспомнить закон усложнения системной организации в приложении к организмам (биосистемам), а также закон неограниченности прогресса для биологических структур. Это — правила развития биосистем как бы изнутри, вне среды жизни.[ . ]

Наибольшим обобщением явилась работа Букваревой Е. Н. , в которой дается теоретическое и экспериментальное обоснование существования интервала оптимального уровня разнообразия как отвечающего максимальной кумуляции энергии в биосистеме. Таким образом, понятие биоразнообразия приобрело энергетическую меру, появились доказательные представления о критических и оптимальных точках уровня биоразнообразия, характеризующих устойчивость биосистем (рис 1.1.1). Появилась возможность измерять состояние системы и результаты воздействия на нее.[ . ]

Наконец, пятый биоценотический постулат В. Тишлера — ограничения функционирования системы обусловлены внешними условиями, а не внутренними предпосылками,— вновь диалектично противоречив. Эти внешние условия часто готовит сама биосистема. Тут, как кажется, слишком большой упор сделан на организмическую парадигму, преувеличена замкнутость ценоза. На самом деле он одновременно закрытая и открытая система. Вещественно-энергетически, а отчасти и биоценотически, он открыт (с той или другой степенью доступности), но вместе с тем обладает свойством динамического качества замкнутости (для чуждых видов), формирует свою биосреду, в нем определяются лимиты размножения тех или других видов (координируется их давление на среду). Вообще ценоз— саморазвивающаяся система, ограниченная внешними условиями и внутренними предпосылками. В связи с этим пятый биоценотический постулат скорее можно принять в такой формулировке: ограничения функционирования ценоза формируются в результате взаимодействия внешних и внутренних лимитов его развития.[ . ]

Все изменения свойств воды характеризуют ее как непосредственного участника биопроцессов и, как следствие, приводят к регуляции «самостоятельных» биохимических процессов ионных превращений в тканях и органах. Основная масса воды в биосистемах практически не отличается по свойствам от обычной воды. Анализ состояния воды в биологических объектах показал, что для описания функционирования биологических систем и объяснения наблюдаемых эффектов нет необходимости привлекать представления о некоторой специфической структуре воды в биообъектах, хотя характеристики связанной с биологическими структурами воды определить сложно в связи с непрерывным обменом фракций свободной и связанной воды. Наилучшим образом в настоящее время изучен спектр электромагнитного поглощения водной составляющей в инфракрасной области спектра, где идентифицированы основные спектральные полосы поглощения.[ . ]

Системы условно классифицируются по сложности следующим образом: системы, имеющие до тысячи состояний (О 6) — к очень сложным. Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых молекулярных состояний превышает последнее значение. Есть и другой критерий сложности, связанный с поведением системы, ее реакцией на внешнее воздействие. Если система способна к акту решения, т.е. к выбору альтернатив поведения (в том числе и с помощью случайного механизма), то такая решающая система считается сложной. Сложной будет и любая система, включающая в себя в качестве подсистемы хотя бы одну решающую систему.[ . ]

В настоящее время установлен факт существования связи между подготавливающимися землетрясениями и вариациями геомагнитного поля, которые, как правило, весьма малы (1—1,5 нТл, частоты 1 — 10 Гц) и их трудно выделить на уровне приборных помех. Однако некоторые биосистемы, например система кровообращения кроликов, чувствительны к очень малым изменениям магнитных полей, интенсивностью примерно 0,02—2 нТл при частоте около 8 Гц.[ . ]

Поэтому мы не можем согласиться с утверждением, что для приобретения организмом дополнительной устойчивости достаточно изменения температуры в толерантной области. Это положение противоречит даже формальному определению последней как совокупности условий, при которых состояние биосистемы поддерживается гомеостатическими регуляторными механизмами. Нам кажется, что смещение температуры организма на 10-15° от оптимальной сначала приводит к нарушению гомеостаза, скачкообразному изменению метаболизма и подъему устойчивости (стрессу), а затем развивается акклимационный процесс.[ . ]

Не случайно поэтому появляются руководства по экологии, написанные с принципиально разных позиций. В одних она трактуется как современная естественная история, в других — как учение о структуре природы, в котором конкретные виды рассматриваются в качестве форм трансформации вещества и энергии в биосистеме, в третьих — как учение о популяциях, в четвертых — как область науки, относящаяся не только к природе, но и к человеческому обществу, поскольку вскрытые биологические закономерности оказались применимы и к нему.[ . ]

В этом аспекте должен рассматриваться процесс жизнедеятельности биообъектов в условиях непрерывного обмена с окружающей средой веществом, энергией и информацией. Существенного влияния того или иного обмена на процесс жизнедеятельности можно ожидать тогда, когда он органически вписывается в собственные параметры биосистемы.[ . ]

Читайте также:  Аквариум из банки своими руками

Обсуждение применимости второго начала к живым системам составило целую эпоху. Оно существенно расширило горизонты самой термодинамики, включая неравновесную термодинамику важных биофизических и биохимических процессов, но мало что дало для понимания поведения целостных биологических систем. Дело в том, что реальные биосистемы в природе существенно открыты, гетерогенны, нелинейны, нестационарны и далеки от термодинамического равновесия. Совокупность этих свойств находится за пределами применимости второго начала термодинамики, даже с ее новейшими расширениями1. Это обусловливает также сложность применения понятий энтропии и информации при описании общих свойств биологических систем.[ . ]

Угнетающее действие магнитного поля отмечено многими исследователями. Как и при использовании электрического поля, эффект зависит от режима воздействия магнитного поля. В зависимости от параметров электромагнитных полей наблюдается стимулирующий или угнетающий их эффект. В некоторых случаях электромагнитные поля не воздействуют на биосистемы [5].[ . ]

Эти условия изменяет и сама биосистема, образуя биосреду собственного существования. Это свойство биосистем сформулировано в виде закона максимума биогенной энергии (энтропии) В. И. Вернадского — Э. С. Бауэра: любая биологическая или биокосная (с участием живого) система, находясь в подвижном (динамическом) равновесии с окружающей ее средой и эволю-ционно развиваясь, увеличивает свое воздействие на среду. Давление растет до тех пор, пока не будет строго ограничено внешними факторами (надсистемами или другими конкурентными системами того же уровня иерархии), либо не наступит эволюционно-экологическая катастрофа. Она может состоять в том, что экосистема, следуя за изменением более высокой надсистемы как более лабильное образование, уже изменилась, а вид, подчиняясь генетическому консерватизму, остается неизменным. Это приводит к длинному ряду противоречий, ведущих к аномальному явлению: разрушению видом собственной среды обитания (не срабатывает обратная связь, регулирующая деятельность вида в составе экосистемы, а отчасти разлаживаются и популяционные механизмы). В этом случае биосистема разрушается: вид вымирает, биоценоз подвергается деструкции и качественно меняется.[ . ]

Экология (оикос — жилище, логия — наука) как наука о структуре и функции природы развивается с начала XX века. Она исследует взаимосвязь и взаимозависимость человека и других биологических видов с окружающей средой, рациональное использование природных богатств и расширенное воспроизводство биологических ресурсов. Объектом ее изучения являются биосистемы (биологические и абиотические компоненты), образующиеся, функционирующие (живущие) и разрушающиеся (умирающие) на всех уровнях жизни: гены (генетические системы), клетки (клеточные системы), органы (системы органов), организмы (системы организмов), популяции (популяционные системы), сообщества (экологические системы). Под популяцией понимается народ, группа людей, группа особей любого вида организмов. Организм, орган, клетка и ген — это главные уровни организации жизни. Сообщество включает все популяции и отдельные биологические виды и характеризует жизнь во всем ее разнообразии. Взаимодействие с окружающей средой (энергией, веществом) на каждом уровне создает функциональную экосистему—основной объект изучения современной экологии. Оптимизация экосистем на всех уровнях жизни, равно как целостной экосистемы Земли составляет главную задачу экологической науки [1].[ . ]

Хотя ясно, что живое неотрывно от среды, а все три перечисленные закономерности как бы игнорируют эту связь, такой неизбежный редукционизм допустим. В индивидуальном развитии его предопределенность почти абсолютна. Если системы живого не погибают, они обладают свойством конечной эквивалентности, что сформулировано в виде соответствующего правила Л. фон Берталамфи (30-е гг. нашего века). Правило эквивалентности в развитии биосистем утверждает, что биосистемы способны достигнуть конечного (финального) состояния (фазы) развития вне зависимости от степени нарушения начальных условий своего развития. Еще раз следует подчеркнуть, что это происходит лишь при сохранении минимума внешних и внутренних условий существования биосистемы.[ . ]

Однако экспериментально в биологической системе выяснить, какая из двух причин флуктуаций является главной, не представляется возможным. Хаотическое поведение внутри некоторой области выглядит одинаковым независимо от причин, его вызывающих. Причем практическое их выяснение часто не очень важно. В первом приближении для изучения переходных процессов не существенно также, отображается ли состояние системы точкой или небольшой областью. Главное в том, что хаотическое поведение биосистемы целесообразно с точки зрения адаптационного процесса. Хаотизация функциональных свойств способствует отслеживанию биосистемой внешних условий и приспособлению к ним.[ . ]

Хотя слабые раздражения по принципу «ничего» не воспринимаются, чем сильнее раздражитель, тем труднее субъективно оценить его количественно; это положение называют законом субъективной количественной оценки раздражителя Э. Вебера — Г. Фехнера. Чем контрастней фон, тем легче улавливаются и оцениваются раздражения при их слабости, но сильные источники раздражения уже могут не давать эффекта разницы в восприятии. Закон определяет достаточность развития какого-то признака (яркости окраски самцов в половом отборе и т. п.). Видимо, в теории информации при приложении ее к биосистемам и экологии имеются значительные пробелы в знании действия этого закона. Тут есть большое поле для будущих исследований. Пока эмпирических данных под углом зрения обсуждаемого обобщения практически нет. Во всяком случае, они мне не известны.[ . ]

Абиологические тенденции, под которыми понимаются такие черты образа жизни человека, как гиподинамия, курение, наркомания и другие, тоже являются причиной многих заболеваний — ожирение, рак, кардиологические болезни и др. К этому ряду относится и стерилизация среды — фронтальная борьба с вирусно-микробным окружением, когда вместе с вредными уничтожаются и полезные формы живого окружения человека. Это происходит в силу того, что в медицине еще есть недопонимание важной роли в патологии надор-ганизменных форм живого, т. е. человеческой популяции■ Поэтому большим шагом вперед является развиваемое экологией представление о здоровье как о состоянии биосистемы и его теснейшей связи со средой, а патологические явления при этом рассматриваются как вызванные ею приспособительные процессы.[ . ]

С религиозной точки зрения, сохранение экосистемного биоразнообразия представляется проблемой нравственных «смысложизненных» оснований жизни людей. Здесь человек или признает через покаяние содеянное им природе зло, усмиряет свою гордыню и принимает свое положение в природе как положение части общесистемного социоприродного ансамбля, или по-прежнему считает себя Человекобогом, венцом, царем природы и при этом насилует ее («мать свою») в угоду своим текущим потребностям. Религиозная сторона проблемы биоразнообразия сводится к мировоззренческой дилемме: или природа свята по той причине, что она сотворена Богом и человек является всего лишь ее системным элементом, обязанным считаться с биосистемой и отвечать за свои поступки в силу особой своей роли в ней как разумного существа; или не природа не обладает никакими сакральными чертами, являясь источником материальных ресурсов, обслуживающим человека как хозяина, суверена природы. Примирительной системой взглядов на природу, определяемых теистической (религиозной) установкой и атеистической (материалистической) установкой, является концепция пантеизма: не природа свята сама по себе, она — источник не только ресурсов, но и добра, красоты, образцов поведения, знаний. Этой точки зрения из наших современников придерживается, например, Н. Н. Моисеев.[ . ]

Иерархический подход дает удобную основу для подразделения и изучения сложных ситуаций или широких градиентов. Как указывал Новиков (Г оу1ко1£, 1945), эволюция Вселенной характеризуется и непрерывностью, и дискретностью. Развитие можно рассматривать как процесс непрерывный, поскольку оно состоит ® нескончаемом изменении, но вместе с тем этот процесс дискретен, поскольку развитие проходит через ряд отдельных уровней организации. Таким образом, деление ступенчатого ряда, или иерархии, на компоненты во многих случаях искусственно, но иногда такое деление может быть основано на естественных разрывах. Так как каждый уровень в спектре биосистемы «интегрирован», т. е. взаимосвязан с другими уровнями, здесь нельзя найти резких границ или разрывов в функциональном смысле. Их нет даже между организмом и популяцией. Например, организм, изолированный от популяции, не в состоянии жить долго, точно так же, как изолированный орган не может длительное время сохраняться как самопод-;держивающаяся единица без своего организма. Подобным же юбразом сообщество не может существовать, если в нем не происходит круговорот веществ и в него не поступает энергия. Тот ¡же аргумент можно привлечь для опровержения уже упоминавшегося неверного представления о том, будто бы человеческая цивилизация может существовать независимо от мира природы.[ . ]

Когерентные домены воды должны быть способны к коммуникации между собой за счет эффекта Джозефсона и чувствительными по отношению к отдельным квантам магнитного потока (2,0710 15Вб). Квантование магнитного потока является фундаментальным свойством когерентности в магнитном поле. В пассивных физических системах необходимая когерентность и долговременное упорядочение достигается только в пределах абсолютной температуры. В лазерных и живых системах когерентность достигается за счет динамических процессов. Однако вода может быть когерентной в основном состоянии, в то время как лазер – в возбужденном состоянии. Если живая система способна ощущать кванты магнитного поля, то к ней применим и эффект Джозефсона, поскольку его основа заключается в квантовании магнитного потока. Примеры проявления данного эффекта в биосистемах представлены в работе [30].[ . ]

Менее очевиден сформулированный Г. Ф. Хильми и оставшийся почти незамеченным научной общественностью закон обеднения разнородного живого вещества (биоты) в островных его сгущениях. В авторской трактовке: «индивидуальная система, работающая в . среде с уровнем организации более низким, чем уровень самой системы обречена: постепенно теряя структуру, система через некоторое время растворится в окружающей. среде»1. Другие названия этого обобщения — принцип организационной деградации и закон растворения системы в чуждой среде (разд. 3.5.2). Фактически это общесистемный закон. Он тесно связан с законом оптимальности и в значительной мере отражает термодинамику малой системы, находящейся в чуждой среде. Здесь мы вновь возвращаемся к нему, акцентируя внимание на биоте, поскольку искусственное сохранение экосистем лишь малого размера (на ограниченной территории, например, при заповедании) ведет к их постепенной деструкции и не обеспечивает целей сохранения видов и их сообществ. Чем выше разница между уровнем организации островной биосистемы и ее окружения, тем скорее происходит деградация биоты. Одновременно меняются и все остальные компоненты экосистемы, так что сохранить островную биоту изолировано на малых территориях при любых условиях в длительном интервале времени практически невозможно.[ . ]

Второе значение гораздо шире. Как часто бывает, изучение крайне актуального явления живой природы становится не только объектом внимания специалистов-естесгвенников, но и предметом обсуждения самых широких слоев людей, средств массовой информации, политиков, деятелей культуры и образования. Это означает, что экосистемы становятся элементом общественного сознания. Это предопределило стремительное расширение предметного поля проблем экосистем и их изучения. Оно явно приобретает черты социального, культурного, религиозного и политического явления. Человек не может выпрыгнуть из природы», и природа не может обойтись без человека. Следовательно, речь идет о жизни людей в экосистемах, а не о выживании; о сохранении экосистемами своих системных свойств в техногенной цивилизации людей. Биосистемы и социосистемы уже не могут жить порознь. Они обречены на совместное существование.[ . ]

источник

Adblock
detector