Меню

Аморфные тела и их свойства

Аморфные тела (структура диоксида кремния)

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

На рисунке слева (а) изображена решетка молекул кварца, а справа (б) расположение молекул кварцевого стекла, которое является аморфным телом.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

График перехода аморфного тела в жидкое состояние изображен пунктирной линией (2), а график перехода обычного твердого тела в жидкое состояние – сплошной (1).

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

Молдавит, естественное стекло, образованное ударом метеорита, из Беседин, Богемия, Чехия.

источник

В отличие от кристаллических твёрдых тел, в расположении частиц в аморфном теле нет строгого порядка.

Хотя аморфные твёрдые тела способны сохранять форму, кристаллической решётки у них нет. Некоторая закономерность наблюдается лишь для молекул и атомов, расположенных по соседству. Такой порядок называется ближним порядком. Он не повторяется по всем направлениям и не сохраняется на больших расстояниях, как у кристаллических тел.

Примеры аморфных тел – стекло, янтарь, искусственные смолы, воск, парафин, пластилин и др.

Атомы в аморфных телах совершают колебания вокруг точек, которые расположены хаотично. Поэтому структура этих тел напоминает структуру жидкостей. Но частицы в них менее подвижны. Время их колебания вокруг положения равновесия больше, чем в жидкостях. Перескоки атомов в другое положение также происходят намного реже.

Как ведут себя при нагревании твёрдые кристаллические тела? Они начинают плавиться при определённой температуре плавления. И некоторое время одновременно находятся в твёрдом и жидком состоянии, пока не расплавится всё вещество.

У аморфных тел определённой температуры плавления нет . При нагревании они не плавятся, а постепенно размягчаются.

Положим кусок пластилина вблизи нагревательного прибора. Через какое-то время он станет мягким. Это происходит не мгновенно, а в течение некоторого интервала времени.

Так как свойства аморфных тел схожи со свойствами жидкостей, то их рассматривают как переохлаждённые жидкости с очень большой вязкостью (застывшие жидкости). При обычных условиях течь они не могут. Но при нагревании перескоки атомов в них происходят чаще, уменьшается вязкость, и аморфные тела постепенно размягчаются. Чем выше температура, тем меньше вязкость, и постепенно аморфное тело становится жидким.

Обычное стекло – твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400 о С, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Аморфное состоянием вещества неустойчиво. Со временем из аморфного состояния оно постепенно переходит в кристаллическое. Этот процесс в разных веществах проходит с разной скоростью. Мы видим, как покрываются кристаллами сахара леденцы. Для этого нужно не очень много времени.

А для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

В кристаллических твёрдых телах физические свойства различаются в разных направлениях. А в аморфных телах они по всем направлениям одинаковы. Это явление называют изотропностью.

Аморфное тело одинаково проводит электричество и теплоту по всем направлениям, одинаково преломляет свет. Звук также одинаково распространяются в аморфных телах по всем направлениям.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами. Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

источник

Нужно помнить, что не все тела, которые существуют на планете Земля, имеют кристаллическое строение. Исключения из правила получили название «аморфные тела». Чем же они отличаются? Исходя из перевода данного термина – аморфный – можно предположить о том, что такие вещества отличаются от других своей формой или видом. Речь идет об отсутствии так называемой кристаллической решетки. Процесс расщепления, при котором появляются грани, не происходит. Аморфные тела также отличаются тем, что не зависят от окружающей среды, и их свойства постоянны. Такие вещества называются изотропными.

Из школьного курса физики можно вспомнить то, что аморфные вещества имеют такое строение, при котором атомы в них расположены в хаотичном порядке. Определенное место могут иметь лишь структуры-соседи, где такое расположение является вынужденным. Но все же проводя аналогию с кристаллами, аморфные тела не обладают строгой упорядоченностью молекул и атомов (в физике такое свойство получило название «дальний порядок»). В результате исследований было выяснено, что по своей структуре данные вещества схожи с жидкостями.

Некоторые тела (в качестве примера можно взять диоксид кремния, чья формула SiO2) могут одновременно находиться в аморфном состоянии и иметь кристаллическую структуру. Кварц в первом варианте обладает структурой неправильной решетки, во втором – правильного шестиугольника.

Как уже говорилось выше, аморфные тела не обладают кристаллической решеткой. Их атомы и молекулы имеют ближний порядок размещения, что и будет первым отличительным свойством данных веществ.

Текучестью данные тела обделены. Для того чтобы лучше объяснить второе свойство веществ, можно сделать это на примере воска. Ни для кого не секрет, что если налить воду в воронку, то она просто выльется из нее. То же самое будет и с любыми другими текучими веществами. А свойства аморфных тел не позволяют им проделывать такие «трюки». Если воск поместить в воронку, то он предварительно растечется по поверхности и лишь потом начнет стекать с нее. Это связано с тем, что молекулы в веществе перескакивают из одного положения равновесия в абсолютно другое, не имея основного местоположения.

Пора поговорить о процессе плавления. Следует запомнить тот факт, что аморфные вещества не имеют определенной температуры, при которой начинается плавление. Во время поднятия градуса тело постепенно становится мягче и затем превращается в жидкость. Физики всегда делают упор не на температуре, при которой данный процесс начал происходить, а на соответствующем температурном интервале плавления.

О нем уже было сказано выше. Аморфные тела изотропны. То есть их свойства в любом направлении неизменны, даже если условия пребывания в местах различны.

Хоть раз каждый человек наблюдал, что с течением определенного промежутка времени стекла начинали мутнеть. Это свойство аморфных тел связно с повышенной внутренней энергией (она в разы больше, чем у кристаллов). Из-за этого данные вещества спокойно сами могут перейти в кристаллическое состояние.

Спустя определенный промежуток времени любое аморфное тело переходит в кристаллическое состояние. Это можно наблюдать в привычной жизни человека. Например, если оставить леденец или мед на несколько месяцев, то можно заметить, что они оба потеряли свою прозрачность. Обычный человек скажет, что они просто засахарились. И правда, если разломать тело, то можно заметить наличие кристаллов сахара.

Итак, говоря об этом, необходимо уточнить, что самопроизвольное превращение в другое состояние связано с тем, что аморфные вещества неустойчивы. Сравнивая их с кристаллами, можно понять, что последние в разы «мощнее». Объяснить факт можно благодаря межмолекулярной теории. Согласно ей, молекулы постоянно перескакивают с одного места на другое, тем самым заполняя пустоты. Со временем образуется устойчивая кристаллическая решетка.

Процессом плавления аморфных тел называется момент, когда с поднятием температуры все связи между атомами рушатся. Именно тогда вещество превращается в жидкость. Если условия плавления таковы, что давление одинаково на протяжении всего периода, то температура также должна быть фиксированной.

Читайте также:  Как сообщить жене о любовнице анонимно

В природе существуют тела, которые имеют жидкокристаллическую структуру. Как правило, они входят в перечень органических веществ, а их молекулы обладают нитевидной формой. Тела, о которых идет речь, обладают свойствами жидкостей и кристаллов, а именно текучестью и анизотропией.

В таких веществах молекулы располагаются параллельно друг другу, однако, между ними нефиксируемое расстояние. Они движутся постоянно, но ориентацию менять несклонны, поэтому постоянно находятся в одном положении.

Аморфные металлы больше известны обычному человеку под названием металлические стекла.

Еще в 1940 году ученые заговорили о существовании данных тел. Уже тогда стало известно, что специально полученные вакуумным напылением металлы, не имели кристаллических решеток. И лишь через 20 лет было произведено первое стекло такого типа. Особого внимания у ученых оно не вызвало; и только спустя еще 10 лет о нем заговорили американские и японские профессионалы, а потом уже корейские и европейские.

Аморфные металлы отличаются вязкостью, достаточно высоким уровнем прочности и стойкостью к коррозии.

источник

Не все твёрдые тела – кристаллы. Существует множество аморфных тел.

У аморфных тел нет строгого порядка в расположении атомов. Только ближайшие атомы – соседи располагаются в некотором порядке. Но строгой направленности по всем направлениям одного и того же элемента структуры, которая характерна для кристаллов в аморфных телах, нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц SiO2, может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решётки из правильных шестиугольников. Аморфная структура кварца также имеет вид решётки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти и семиугольники.

В 1959 г. английский физик Д. Бернал провёл интересные опыты: он взял много маленьких пластилиновых шариков одинакового размера, обвалял их в меловой пудре и спрессовал в большой ком. В результате шарики деформировались в многогранники. Оказалось, что при этом образовывались преимущественно пятиугольные грани, а многогранники в среднем имели 13,3 грани. Так что какой-то порядок в аморфных веществах определённо есть.

К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др. В отличие от кристаллических веществ аморфные вещества изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Аморфные тела занимают промежуточное положение между кристаллическими твёрдыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Понимание структуры твёрдых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые тела и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Проследим за куском смолы, который лежит на гладкой поверхности. Постепенно смола по ней растекается, и, чем выше температура смолы, тем быстрее это происходит.

Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры тел у аморфных тел, в отличие от кристаллических, нет.

При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Под действием механических нагрузок или при изменении температуры аморфные тела могут закристаллизоваться. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Главный признак аморфного (от греческого “аморфос” – бесформенный) состояние вещества – отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.

источник

В предыдущем параграфе мы узнали, что некоторые твёрдые тела (например, все металлы и другие) являются моно- или поликристаллами. Познакомимся теперь с так называемыми аморфными телами. По своим свойствам они занимают промежуточное положение между кристаллами и жидкостями, поэтому их нельзя однозначно назвать твёрдыми. Проделаем опыт.

Нам понадобятся кусок пластилина, стеариновая свеча и электрокамин (электрообогреватель). Поставим пластилин и свечу на равных расстояниях от камина. Через некоторое время часть стеариновой свечи расплавится, часть – останется в виде твёрдого тела, а пластилин только «обмякнет». Некоторое время спустя, весь стеарин расплавится, а пластилин постепенно «расплывётся», став совсем мягким.

Подобно стеарину, существуют и другие вещества (например, все металлы), которые при нагревании не размягчаются, и во время плавления всегда можно видеть как жидкость, так и ещё не расплавившуюся часть тела. Эти тела – кристаллические. Однако существуют тела, которые при нагревании постепенно размягчаются, становятся всё более текучими, поэтому невозможно указать температуру, при которой они превращаются в жидкость (плавятся).Эти тела – аморфные.

Аморфные тела даже при невысоких температурах обладают текучестью. Подтвердим это опытом. В стеклянную воронку бросим кусок типично аморфного вещества, смолы, и оставим в тёплой комнате. Через несколько недель окажется, что смола приняла форму воронки и даже начала вытекать из неё наподобие «струи» (см. рисунок). Этот опыт показывает, что аморфное тело ведёт себя как очень густая и вязкая жидкость.

Строение аморфных тел. Исследования при помощи электронного микроскопа и рентгеновских лучей свидетельствуют, что в аморфных телах не наблюдается строгого порядка в расположении их частиц. В отличие от кристаллов, где существует дальний порядок в расположении частиц, в строении аморфных тел есть ближний порядок. Это значит, что некая упорядоченность расположения частиц сохраняется лишь вблизи каждой отдельной частицы (см. рисунок).

На верхней части рисунка изображено расположение частиц в кристаллическом кварце, на нижней – в аморфной форме существования кварца. Эти вещества состоят из одних и тех же частиц – молекул оксида кремния SiO2.

Как и частицы любых тел, частицы аморфных тел непрерывно и беспорядочно колеблются и чаще, чем частицы кристаллов, могут перескакивать с места на место. Этому способствует то, что частицы аморфных тел расположены неодинаково плотно – между их частицами кое-где имеются сравнительно большие промежутки. Однако это не то же, что «вакансии» в кристаллах (см. § 7-е).

Кристаллизация аморфных тел. С течением времени (недели, месяцы) некоторые аморфные тела самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или мёд, оставленные в покое на несколько месяцев, становятся непрозрачными. В этом случае говорят, что мёд и леденцы «засахарились». Разломив засахарившийся леденец или зачерпнув мёд ложкой, мы действительно увидим образовавшиеся кристаллики сахара, прежде существовавшего в аморфном состоянии.

Самопроизвольная кристаллизация аморфных тел свидетельствует, чтокристаллическое состояние вещества является более устойчивым, чем аморфное. МКТ объясняет это так. Cилы отталкивания «соседок» заставляют частицы аморфного тела перемещаться преимущественно туда, где есть большие промежутки. В результате возникает более упорядоченное расположение частиц, то есть происходит кристаллизация.

источник

Как уже отмечалось, аморфные тела по макроскопическим признакам – упругости, твердости, теплоемкости и другим – относятся к твердым, но резко отличаются от кристаллов отсутствием правильной решетки. Различие в строении кристаллических и аморфных веществ определяет и различие в их свойствах. Так, аморфные вещества, обладая большим запасом свободной энергии, химически более активны, чем кристаллические вещества такого же состава.

По структуре тела в аморфном состоянии эквивалентны жидкостям: в аморфных телах отсутствует дальний порядок в расположении атомов, в отсутствие внешних воздействий они изотропны. Однако характер тепловых колебаний атомов в аморфных телах близок к характеру движения атомов в кристаллах, в то время как в жидкостях наряду с колебаниями наблюдается и хаотическое поступательное перемещение. Аморфный кремний по своему поведению гораздо больше похож на кристаллический полупроводник, чем на жидкий металл.

Физические, химические и металлические свойства аморфных тел определяются как их химическим составом, так и структурой – взаимным расположением атомов и молекул в ближайшем окружении.

Аморфные твердые тела по многим своим свойствам и главным образом по микроструктуре обычно рассматривают как сильно переохлажденные жидкости с очень высоким коэффициентом вязкости.

С энергетической точки зрения различие между кристаллическими и аморфными твердыми телами хорошо прослеживаются в процессе отвердевания и плавления. Кристаллические тела имеют точку плавления Тпл (рис.9.3) – температуру, когда вещество устойчиво существует в двух фазах – твердой и жидкой (рис.9.3).

Переход молекулы твердого тела в жидкость означает, что она приобретает дополнительно три степени свободы поступательного движения. Таким образом, единица массы вещества при Тпл в жидкой фазе имеет бỏльшую внутреннюю энергию, чем такая же масса в твердой фазе. Кроме того, меняется расстояние между частицами.

У аморфных тел теплота плавления отсутствует (кривая 2 на рис 9.3). Нагревание приводит к постепенному увеличению скорости теплового движения и уменьшению вязкости. На графике процесса имеется точка перегиба, которую условно называют температурой размягчения. При дальнейшем повышении температуры аморфные вещества постепенно все больше размягчаются и выше температуры стеклования (Tст) переходят в жидкое состояние.

Все аморфные тела изотропны – их физические свойства одинаковы по всем направлениям. В телах, находящихся в аморфном состоянии, нельзя обнаружить даже очень малые области, внутри которых наблюдалась бы зависимость физических свойств от направления. Тепловые, электрические и оптические свойства аморфных тел оказываются совершенно не зависящими от направления.

Приведем следующий пример. В аморфном состоянии могут находиться и такие вещества, которые обычно имеют кристаллическое строение. Так, например, кристалл кварца, если его расплавить (это происходит при температуре 1700 о С), при охлаждении образует так называемый плавленый кварц, имеющий меньшую плотность, чем кристаллический, и обладающий свойствами, совершенно одинаковыми по всем направлениям, притом сильно отличающимися от свойств кристаллического кварца. У кристаллического кварца коэффициенты линейного расширения для двух взаимно перпендикулярных направлений равны 1,3∙10 -5 и 8∙10 -6 К -1 , а у плавленого кварца коэффициент линейного расширения для всех направлений один и тот же: 4∙10 -7 К -1 .

Читайте также:  Как избавиться от улиток в подвале

Теплопроводности кристаллического кварца для тех же направлений разнятся почти в два раза, в то время как у плавленого кварца теплопроводность для всех направлений одна и та же, причем он в двадцать раз меньше наименьших теплопроводностей кристаллического кварца. Различие в теплопроводности аморфного и кристаллического кварца при низких температурах становится еще более значительным.

Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов из-за отсутствия резких и сильно загрязнённых примесями межкристаллических границ с зачастую абсолютно другим химическим составом.

Прочность аморфных веществ, как правило, ниже прочности кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию стекол, например при получении ситаллов и шлакоситаллов, стеклокремнезита.

Атомы или молекулы аморфных тел, подобно молекулам жидкости, имеют определённое время “оседлой жизни” – время колебаний около положения равновесия. Но в отличие от жидкостей это время у них весьма велико. В этом отношении аморфные тела близки к кристаллическим, так как перескоки атомов из одного положения равновесия в другое происходят редко.

При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твердым веществам, и текучесть, подобно жидкости, поэтому моделируются в механике сплошных сред как вязкоупругие среды. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например, растяжении) аморфные вещества текут.

Аморфное состояние вещества, вообще говоря, — неустойчивое состояние. По прошествии некоторого времени аморфное вещество переходит в кристаллическое. При таком переходе меняются объем, теплосодержание, а также механические, электрические и другие свойства вещества. Нередко, однако, время перехода бывает весьма значительным и измеряется годами и десятилетиями.

По некоторым свойствам ряд аморфных металлов значительно отличаются от кристаллических того же состава. В частности, некоторые из них отличаются высокой прочностью и вязкостью, коррозионной стойкостью, высокой магнитной проницаемостью.

Аморфные металлы (металлические стёкла) — класс металлических твердых тел с аморфной структурой, характеризующейся отсутствием дальнего порядка и наличием ближнего порядка в расположении атомов. В отличие от металлов с кристаллической структурой, аморфные металлы характеризуются фазовой однородностью, их атомная структура аналогична атомной структуре переохлаждённых расплавов.

Ряд металлических стёкол отличается очень высокой прочностью и твёрдостью. В аморфных сплавах на основе элементов подгруппы железа (Fe, Co, Ni) твёрдость может превышать 1000 ГН/м 2 , прочность — 4 ГН/м 2 . Вместе с этим металлические стёкла обладают очень высокой вязкостью разрушения: например, энергия разрыва Fe80P13C7 составляет 110 кДж/м 2 , тогда как для стали X-200 значение этого параметра 17 кДж/м 2 .

Сопротивление аморфных металлов составляет, как правило, около 100—300 мкОм·см, что значительно выше сопротивления кристаллических металлов. Кроме того, сопротивление разных металлических стёкол в определённых температурных диапазонах характеризуется слабой зависимостью от температуры, а иногда даже убывает с увеличением температуры.

К аморфным (стеклообразным) полупроводникам относятся селениды, теллуриды, сульфиды элементов V группы периодической системы, образующие соединения с аморфной структурой: Sb2Te3, As2S3, As2Se3, As2Se5. Для них характерен ближний порядок и зонная теория не применима. Свойства можно объяснить на основе теории валентной связи. Их проводимость мало зависит от примесей, а зависит от размеров атомов, образующих соединения. С уменьшением радиуса атома полупроводниковые свойства переходят в диэлектрические.

Применение аморфных веществ. В аморфном состоянии могут находиться диэлектрики, полупроводники и металлы, одно-, двух- и многокомпонентные, пластические массы и высокомолекулярные соединения. Аморфные материалы широко применяются в различных отраслях техники и быту. Тонкие аморфные пленки являются основой современной полупроводниковой техники и солнечных батарей для прямого превращения солнечной энергии в электроэнергию, нет необходимости доказывать многообразную необходимость неметаллических стекол самого различного назначения – от строительного до волоконно-оптического. Металлические стекла обладают некоторыми уникальными свойствами в отношении магнитной проницаемости, коррозионной стойкости, прочности и пластичности.

Контрольные вопросы

1. Поясните разницу в структурах кристаллических и аморфных тел.

2. Каков процесс образования аморфного состояния?

3. Как отличается внутренняя энергия кристаллических и твердых тел, и к какому явлению это приводит?

4. Каковы основные отличия свойств аморфных тел от кристаллических?

5. Имеют ли аморфные вещества температуру плавления?

6. В чем заключается свойство изотропии аморфных веществ? Поясните на примере кристаллического кварца и кварцевого стекла.

7. Как отличается прочность аморфных и кристаллических тел?

8. Каковы свойства аморфных металлов?

9. Приведите примеры применения аморфных веществ.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: “Что-то тут концом пахнет”. 8078 – | 7745 – или читать все.

176.59.112.64 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

  • сформировать понятия: «кристаллическое тело», «кристаллическая решетка», «монокристалл», «поликристалл», «аморфное тело»;
  • выявить основные свойства кристаллических и аморфных тел;
  • развивать умения выделять главное;
  • развивать умение систематизировать материал;
  • развивать познавательный интерес к предмету, используя разнообразные формы работы;
  • воспитывать научное мировоззрение.

Оборудование:

  • набор кристаллических тел,
  • набор моделей кристаллических решеток
  • Презентация

Вступление.

Большинство окружающих нас твердых тел — вещества в твердом состоянии. Специальная область физики — физика твердого тела— занимается изучением строения и свойств твердых тел. Эта область физики является ведущей во всех физических исследованиях. Она составляет фундамент современной техники. В любой отрасли техники используются свойства твердого тела: механические, тепловые, электрические, оптические и т.д.

Какие вещества называются твердыми?

  1. Вещество называют твердым, если оно сохраняет свою форму и объем, т.е. внешние признаки.
  2. В физике под твердыми телами подразумевают вещества, у которых имеется кристаллическое строение, т.е. «дальний порядок», в расположении его частиц. В зависимости от структуры различают тела кристаллические и аморфные.

Кристаллическая форма твердого тела всегда вызывала восхищение и восторг. Многие поэты выражали свои впечатления при виде кристаллов в виде стихов:

И шальной холодок изумруда,
И тепло золотого топаза,
И простого кальцита премудрость
– Лишь они не обманут ни разу.

В них, в безмолвных осколках вселенной,
Искры вечных гармоний сверкают.
Повседневности образ надменный
В этих искрах бледнеет и тает.

Они дарят покой и защиту,
Они дарят огонь вдохновенья,
Заплетаясь цепочкой единой,
С нашей бренностью – в вечности звенья.
Виктор Слётов

Учитель: Другой вид твердых тел – аморфные. Свойства аморфных тел так же интересны и вызывают восхищение.

Застыла капелька смолы янтариком прозрачным меж корней сосны высокой.
Остановилось Солнышко на ней своим горячим и весёлым, ярким оком.

И, тёплую от ласковых лучей, её в ладони осторожно приняла я…
Из капельки смолы – янтарь родится! Мне от тепла её почудилось: она – живая,

И аромат смолы защекотал мне ноздри… О дух хмельной лесного края!
Как в смрадных улиц тесноте тебя я часто вспоминаю!

Настоян ты на травах и цветах, и на зелёной вечно хвое.
Как мне легко тебя вдыхать, все клеточки наполнились тобою!

И, запрокинув голову, гляжу, как в вышине сплетают сосны свои кроны,
И невесомо облака плывут по ним, как стаи лебедей в волнах сине-зелёных…

Мне так светло, такой в душе простор – я целый Мир могу вместить в неё.
И хочется обнять мне всех людей и сердце им отдать своё!
Юлия Владова

Основной этап урока

Учитель: Пора познакомиться подробнее с кристаллическими и аморфными телами. Перед вами статья «Кристаллические и аморфные тела». Работаем парами.

Задание 1. Прочитайте статью «Кристаллические и аморфные тела». Приложение 1.

Задание 2.Ответитьте на вопросы:

  • Каковы свойства кристаллических тел?
  • Каковы свойства аморфных тел?
  • Что называется изотропностью?
  • Что называется анизотропией?
  • Назовите виды кристаллических решеток.
  • Приведите примеры кристаллических тел.
  • Приведите примеры Аморфных тел.
  • Что называется монокристаллом? Приведите примеры
  • Что называется поликристаллом? Приведите примеры

Обсуждение ответов на вопросы. Выполнение записи в тетради:

Кристаллы (от греч. κρύσταλλος, первоначально —лед, в дальнейшем —горный хрусталь, кристалл) — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку —кристаллическую решетку.

Свойства кристаллических тел.

    1. Температура плавления постоянна.
    2. Имеют кристаллическую решетку
      Типы кристаллов
      а) ионные;
      б) атомные;
      в) металлические;
      г) молекулярные.
    3. Каждое вещество имеет свою температуру плавления.
    4. Анизотропны (механическая прочность, оптические, электрические, тепловые свойства).

Ам́орфные веществ́а (отдр.греч ἀ «не-» и μορφή «вид, форма») не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней, как правило — изотропны, то есть не обнаруживают различных свойств в разных направлениях, не имеют определённой точки плавления. К аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы.

Свойства аморфных тел.

    1. Не имеют постоянной температуры плавления.
    2. Не имеют кристаллического строения.
    3. Изотропны.
    4. Обладают текучестью.
    5. Имеют только «ближний порядок» в расположении частиц.
    6. Способны переходить в кристаллическое и жидкое состояние.
    1. Шар, выполненный из монокристалла, при нагревании может изменить не только свой объем, но и форму. Почему?
    2. Кубик из стекла и кубик , вырезанный из монокристалла кварца, опущены в горячую воду. Сохранят ли кубики свою форму?
    3. Почему в природе не существует кристаллов шарообразной формы?

Сообщение учащегося «Из истории открытия кристаллов»:

В 1910 году шахтёры открыли пещеру под шахтами Найка, позже названную Пещера мечей . Она расположена на глубине 120 м, над Пещерой кристаллов, и заполнена красивыми светлыми и прозрачными кристаллами примерно метровой длины. Предполагается, что на этой глубине температура упала значительно раньше, прекратив рост кристаллов.

Пещера кристаллов была обнаружена в 2000 году братьями-шахтёрами Санчез, прокладывавшими новый туннель в шахтовом комплексе для компании Индустриас Пеньолес . В шахтовом комплексе Найка имеются существенные залежи серебра, цинка, свинца. Пещера кристаллов — это полость в форме подковы в массиве известняка. Громадные кристаллы пересекают пространство пещеры в разных направлениях. Из пещер постоянно откачивается вода. В случает остановки оборудования они снова затопятся. Кристаллы деградируют на воздухе, поэтому исследователи из «Проекта Найка» стремятся задокументировать этот геологический объект.

Новый зал, названный «Ледовый дворец», был открыт при бурении в 2009 году. Он находится на глубине 150 м и не заполнен водой. Формации кристаллов значительно меньшие, с тонкими нитевидными наростами.

Читайте также:  Почему горит ухо левое и щека

Сообщение учащегося «Из истории стекла»:

Долгое время первенство в открытии стеклоделия признавалось за Египтом чему несомненным свидетельством считались глазурованные стеклом фаянсовые плитки внутренних облицовок пирамиды Джессера (27ой век до н. э.); к ещё более раннему периоду (первой династии фараонов) относятся находки фаянсовых украшений, то есть стекло существовало в Египте уже 5 тысяч лет назад. Археология Двуречья, в особенности — Древних Шумера и Аккада, склоняет исследователей к тому, что немногим менее древними образцом стеклоделия следует считать памятник, найденный в Месопотамии в районе Ашнунака — цилиндрическую печать из прозрачного стекла, датируемую периодом династии Аккада, то есть возраст её — около четырёх с половиной тысяч лет. Бусина зеленоватого цвета диаметром около 9 мм, хранящаяся в Берлинском музее, считается одним из древнейших образцов стеклоделия. Найдена она была египтологом Флиндерсом Питри около Фив, по некоторым представлениям ей пять с половиной тысяч лет. Н. Н. Качалов отмечает, что на территории Старовавилонского царства археологи регулярно находят сосудики для благовоний местного происхождения, выполненные в той же технике, что и египетские. Учёный утверждает — есть все основания считать, «что в Египте и в странах Передней Азии истоки стеклоделия… отделяются от наших дней промежутком приблизительно в шесть тысяч лет».

Существует также несколько легенд, с той или иной степенью правдоподобия толкующих возможные предпосылки того, как сложилась технология. Н. Н. Качалов воспроизводит одну из них, поведанную античным естествоиспытателем и историком Плинием Старшим(I век). Эта мифологическая версия гласит, что однажды финикийские купцы на песчаном берегу, за неимением камней, сложили очаг из перевозимой ими африканской соды — утром на месте кострища они обнаружили стеклянный слиток.

Египетские стеклоделы плавили стекло на открытых очагах в глиняных мисках. Спёкшиеся куски бросали раскалёнными в воду, где они растрескивались, и эти обломки, так называемые фритты, растирались в пыль жерновами и снова плавились.

Фриттование использовалось ещё долго после Средневековья, поэтому на старых гравюрах и при археологических раскопках мы всегда находим две печи — одну для предварительной плавки и другую для плавки фритт. Необходимая температура проплавления составляет 1450°C, а рабочая температура — 1100—1200 °C. Средневековая плавильная печь («гуть» — по чешски) представляла собой низкий, топящийся дровами свод, где в глиняных горшках плавилось стекло. Выложенная только из камней и глинозёма, долго она не выдерживала, но надолго не хватало и запаса дров. Поэтому, когда лес вокруг гуты вырубали, её переводили на новое место, где леса было ещё в достатке.

Ещё одной печью, обычно соединяемой с плавильной, была отжигательная печь — для закалки, где готовое изделие нагревалось почти до точки размягчения стекла, а затем — быстро охлаждалось, чтобы тем самым компенсировать напряжения в стекле (предотвратить кристаллизацию). Интересны сведения, имеющие отношение и к истории стекла и тому факту, что стекло, в общем смысле, за время своего существования, в отличие от многих других материалов, не претерпело практически никаких изменений (самые ранние образцы того, что стали называть стеклом ничем не отличаются от известного всем — бутылочного; исключением, конечно, являются виды стёкол с заданными свойствами), однако в данном случае речь идёт о веществе и материале минерального происхождения, нашедшем применение в современной практике.

1. Какое из перечисленных свойств характерно для кристаллических тел? Выберите правильный ответ.

  • А.Существование определенной температуры плавления.
  • Б. Изотропность.
  • В. Отсутствие определённой температуры плавления.

2. Какое из перечисленных свойств характерно только для аморфных тел? Выберите правильный ответ.

  • А. Анизотропность.
  • Б. Существование определённой температуры плавления.
  • В.Отсутствие определённой температуры плавления.

3. Что называется анизотропией кристаллов?

  • А. Зависимость физических свойств от направления внутри кристалла.
  • Б. Одинаковость физических свойств по всем направлениям.
  • В. Хорошая теплопроводность внутри кристалла.

4. Что можно сказать об изменении температуры в процессе плавления кристаллического тела?

  • А. Температура остается постоянной.
  • Б. Температура увеличивается.
  • В. Температура может быть любой.

5. Что такое монокристалл?

  • А. Тело, имеющее правильную геометрическую форму и ограниченное естественными плоскими гранями
  • Б. Частица вещества, имеющая правильную геометрическую форму
  • В. Твердое тело, состоящее из одного кристалла

источник

Французский физик Эрик Дежьюли (Eric DeGiuli) разработал статистическую теорию поля, которая описывает поведение аморфных твердых тел с произвольной внутренней структурой в двух и трех измерениях. Предсказания этой теории хорошо согласуются с результатами экспериментов и численных расчетов, а также позволяют объяснить упругие свойства аморфных тел, которые отсутствуют на малых масштабах, но проявляются на макроскопическом уровне. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org. Параллельно с этой работой автор выпустил в Physical Review E более подробную статью (препринт), в которой разбирает детали проведенных вычислений.

Большая часть окружающих нас твердых материалов — цемент, стекло и пластик — не имеют внутренней кристаллической структуры, то есть их частицы не упорядочены, а механические свойства не зависят от направления. Такие материалы называют аморфными. Кроме того, к аморфным телам относят коллоидные растворы (йогурт или шоколадный мусс) и сыпучие материалы, состоящие из большого числа макроскопических частиц (песок), — если приложить к ним нагрузку, они также начинают вести себя, как твердое тело. Несмотря на то, что внутренняя структура различных типов аморфных твердых тел существенно отличается, их механические и термодинамические свойства имеют много общего. Чтобы объяснить эти совпадения, ученые пытаются выделить самые важные параметры, общие для таких тел, и построить теорию, которая позволит предсказывать их свойства.

Поведение твердого тела при изменении температуры определяется его внутренними состояниями (inherent states) и локальной структурой. Например, в кристаллах атомы строго упорядочены (находятся в узлах кристаллической решетки) и находятся в термодинамическом равновесии, а их колебания удобно описывать с помощью фононов. К сожалению, для аморфных твердых тел эти приближения не работают, и в настоящее время не существует общепринятой теории, которая описывает их внутренние состояния. Основное препятствие, которое мешает построить такую теорию, — тот факт, что внутренние напряжения в аморфных телах вызываются не потенциальными силами и не исчезают даже при снятии внешней нагрузки. Например, частицы песка продолжают «цепляться» друг за друга и терять энергию из-за трения даже тогда, когда его ничто не сдавливает. С атомами кристаллической решетки ничего подобного не происходит. В то же время, по своим макроскопическим свойствам аморфные твердые тела очень похожи на кристаллы — например, их теплоемкость и теплопроводность ведут себя практически одинаково при изменении температуры. Это позволяет предположить, что простое объяснение возможно все-таки существует.

Результаты прямых экспериментов и численного моделирования аморфных тел подтверждают, что такое объяснение должно существовать. Например, моделирование сыпучих материалов и переохлажденных жидкостей показало, что корреляционные функции в них подчиняются степенному закону: C

1/r d , где r — расстояние между точками функции, а d — размерность пространства. Корреляционная функция — это функция, которая показывает, насколько сильно совпадают параметры среды, измеренные в различных точках; например, в однородной и изотропной среде корреляционная функция постоянна. Аналогичная зависимость также была получена в экспериментах с сыпучими материалами и коллоидными растворами.

Чтобы объяснить эту зависимость, в 2009 году Силке Хенкес (Silke Henkes) и Бюльбюль Чакраборти (Bulbul Chakraborty) адаптировали для сыпучих материалов подход неравновесной статистической механики, разработанный в конце 1980-х годов британским физиком Сэмом Эдвардсом (Sam Edwards). Связывая макроскопическое поведение такого материала с его внутренними напряжениями, ученые рассчитали корреляционные функции и убедились, что их качественная зависимость совпадает с экспериментом. Также исследователи разработали двумерную теорию поля, которая исчерпывающе описывает поведение двумерных сыпучих материалов.

Слева — микроскопическая структура аморфного тела (стекла). Справа — отклик стекла на внесенный в него диполь в приближении непрерывной среды (теории поля)

Во-вторых, исследователь заменил приближение мультиканонического ансамбля (flat ensemble) на условие малости волнового числа рассматриваемых колебаний поля по сравнению с обратным диаметром частиц материала: kD ≪ 1. Это требование позволяет использовать стандартные методы статистической теории поля, чтобы выделять взаимодействия, которые дают самый большой вклад в корреляционные функции. В-третьих, ученый рассматривал только локальные взаимодействия между внутренними напряжениями, и не накладывал строгих ограничений на силы, такие как требование положительной определенности. В-четвертых, Дежьюли рассматривал предел нулевой температуры, то есть пренебрегал термодинамическими колебаниями. Наконец, физик считал, что материал изотропен и находится в локальном механическом равновесии — суммарная сила и момент, действующие на любой маленький объем вещества, равны нулю.

В результате ученый получил, что корреляционная функция в аморфных материалах ведет себя в точности как C

1/r d (физик рассмотрел случаи d = 2 и d = 3). Это предсказание хорошо согласуется с данными экспериментов и численного моделирования. Кроме того, наличие дальних корреляций означает, что материал обладает упругими свойствами, аналогичными свойствам твердого тела — другими словами, после снятия внешнего напряжения он стремится вернуть свою исходную форму. Важно отметить, что рассуждения Дежьюли не требуют, чтобы эти свойства присутствовали на микроскопическом уровне, как в кристаллических телах. Например, отдельные песчинки практически не притягивают друг друга, однако твердое аморфное тело, состоящее из них, все равно будет упругим.

Автор статьи отмечает, что анализ был проведен в предположении очень низкой температуры, которое редко выполнено на практике. При конечной температуре продольная часть корреляционных функций должна получить поправки, растущие при нагревании тела; тем не менее, они практически не влияют на поперечные части функции, дающие основной вклад в рассмотренные эффекты. Также физик надеется, что его работа поможет лучше предсказывать свойства аморфных тел — например, рассчитать предел прочности цемента в переменных погодных условиях или при больших растяжениях.

В прошлом году материаловеды из США и Франции показали, что механические параметры, описывающие пластическую деформацию аморфных твердых тел, универсальны, то есть подчиняются одинаковым закономерностям вне зависимости от внутренней структуры материала. Для этого ученые рассматривали моменты, когда структура материалов только начинает перестраиваться, и изучали их с помощью численного моделирования и прямых экспериментов.

Кроме того, аморфные твердые тела имеют много общего с сыпучими жидкостями и газами, которые состоят из сравнительно крупных частиц, неупруго взаимодействующих друг с другом. В последнее время физики активно изучают такие системы на практике и в теории. Например, в декабре 2017 исследователи из Испании и Мексики показали, что «жидкость», состоящая из большого числа игральных кубиков, упорядочивается, если периодически вращать ее в противоположные стороны с достаточно большим ускорением. В феврале этого года ученые из Германии и США обнаружили похожие эффекты в системе стеклянных шариков. А в мае немецкие исследователи впервые увидели на практике охлаждение сыпучего газа, состоящего из тонких медных палочек и помещенного в невесомость.

источник

Adblock
detector